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INTRODUCTION

Let us consider a first-order system of linear differential equations given by X ′ = AX where A ∈ Mat2×2(R). The
phase portrait associated to the system is a representative set of solutions plotted as parametric curves on the Cartesian
plane and very much so like the slope field of a first-order differential equation, the phase portrait is a graphic tool used
to visualize the long-term behavior of trajectories once an initial condition has been provided. To draw out the phase
portrait take points X ∈ R2 and compute X ′ via AX in order to draw a vector at each point in the plane from which
the general trajectories can be traced out for varying initial conditions.

Now in order to define a classification of such systems we aim to determine all of the possible phase portraits where
the most natural place to start is the calculation of the equilibrium points, the points at which we have X ′ = 0. This
corresponds to determining all solutions to the system AX = 0, which can be separated into cases depending upon the
structure of A. More specifically, if det(A) 6= 0 then we know that the only solution is the zero vector, otherwise there
are infinitely many solutions. Thus, for the purpose of this presentation we will from now on assume that det(A) 6= 0
so as to worry only about a single equilibrium point.

As we are going to be only concerned with det(A) 6= 0 we have to consider the different scenarios under which
this can occur. By definition det(A) = λ1λ2 where λ1 and λ2 are the two eigenvalues of A, allowing us to break down
the possibilities based on the signs of the eigenvalues.

CLASSIFICATION

Let V1 and V2 represent the corresponding eigenvectors for λ1 and λ2 respectively. Now in general we have that for
arbitrary X = ξ1V1+ξ2V2 where ξ1, ξ2 ∈ R the following AX = A(ξ1V1+ξ2V2) = ξ1AV1+ξ2AV2 = ξ1λ1V1+ξ2λ2V2.

Unstable Node
The above shows that if λ1, λ2 > 0, then the resulting vector given by X ′ = AX points in the same direction as the
vector representing X . It is important to note that eigenvectors point away from the origin, thereby showing that each
time the matrix is applied onto a point, the vector associated to the point is always pointing away from the origin, i.e.:

Such an equilibrium point is classified as an unstable node.



Asymptotically Stable Node
Similarly, for λ1, λ2 < 0 the resulting vector given by X ′ = AX points in the opposite direction as the vector representing
X . Thus, opposite of the situation above, each time the matrix is applied onto a point, the resulting vector is always
pointing towards the origin, i.e.:

Such an equilibrium point is classified as an asymptotically stable node.

Saddle Point
Now in the condition that det(A) < 0 we may assume without loss of generality that λ1 > 0 and λ2 < 0. Whenever this
occurs we have that vectors lying along the direction of V1 are pointing away from the origin, while any vector lying
along the direction of V2 points towards the origin, i.e.:

Such an equilibrium point is classified as a saddle point and is always unstable.



Proper Nodes
In the condition that λ1 = λ2 with geometric multiplicity two, we call the equilibrium point an asymptotically stable
proper node if λ1 < 0:

or an unstable proper node if λ1 > 0:



Improper Nodes
Unfortunately, the situation may not always be as nice as above, i.e. the matrix may not be diagonalizable. In the case
that the geometric multiplicity is one we have an asymptotically stable improper node if λ1 < 0:

or an unstable improper node if λ1 > 0:



Spirals
Now the last three scenarios correspond to when λ1,2 = α ± βi for α, β ∈ R. Knowing what the general solution will
look like for such a system we can say with certainty that the magnitude of a vector is only going to be determined by
the real part α. In the case that α = 0 we obtain what is known as a neutrally stable center:

where the vectors rotate around the equilibrium point for all time. If this is not the case, then either α < 0 giving an
asymptotically stable spiral point:



or an unstable spiral point if α < 0:


