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5.1. The Smale Horseshoe: An Example of a
Hyperbolic Limit Set

The one-dimensional mapping g described above is closely related to anothe;
example, the Smale horseshoe, which is a hyperbolic limit set that has be
a principal motivating example for the development of the modern theory
of dynamical systems. We shall now describe this example in detail, usingis
symbolic dynamics. The example is described in terms of an invertible planar
map which can be thought of as a Poincaré map arising from a three-
dimensional autonomous differential equation or a forced oscillator problem.
In Section 5.3, below, we will see how the horseshoe arises whenever one his
transverse homoclinic orbits, as in the Duffing equation. In Section 2.4 we
have already met an example in which maps and horseshoes arise directly.
We oegin with the unit square § = [0, 1] x [0, 1] in the plane and define
amappingf: § — R? 5o that f(S) N S consists of two components whichar
mapped rectilinearly by f. See Figure 5.1.1.
oo ot o i s et i
folding, the latter beinO d’ 3 factors u and 4 respectively, fOllowed'd )S
Figure 5.1.1(b & done so that the folded portion falls outsid >
-1(b). Thus, restricted to § ~ -1 is li
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Figure 5.1.1. The Smale horseshoe.

As f 1s iterated, most points either leave S or are not contained in an
image f(S). Those points which do remain in S for all time form a set
A={x|fi(x)e S, —oo < i < oo}. This set A has a complicated topological
structure that we now describe. Each horizontal band H, is stretched by f to
arectangle V; = f(H,) which intersects both H, and H, . Since f is rectilinear
on H;, those points that end up in H, after applying f come from thinner
horizonta] strips in H;. See Figure 5.1.2. _
Now H UH, = =S ~ f(S)), so the four thinner strips constitute
80 f(8) n f3(S)). If we continue this argument inductively, we find
th.at ST fS) A A £™(S)) is the union of 2" horizqntal strips. The
thickness of each of these is 4~ " since |df /dy| = p at all points of Hy v Hy
nd the first (y — 1) iterates of the horizontal strips remain inside Hy U H.
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Figure 5.1.2. Iteration off: Vj = f3(Hy)
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Consider now the image under f" of one of the 2" horizontal strips ip
f~"SnfS)yn--—-n £"(S)). Using the chain rule, we have

R E
Df = 0 i/.l"

at these points, so the image is a rectangle of horizontal width » Wwhich
extends vertically from the top to the bottom of the square. The map f»
is 1-1, so the images of the llorlzpnlzll slrn]ps are dlStlr.lCt. We conclu'de that
S f(S) - f%S) is the union of 2 .vcrt‘lcal strips, each.of width
The intersection of these sets over all nz 0 is a Cantor set of verpcal segments
composed of those points which_ are in the images of a-ll the f". To be in A
a point x must be in both a vertical segment and a.horlzont.al.scgmem from
the collection described above. Therefore, topologically, A is itself 4 Cantor
set: its components are each points and each point of A is an accumulatiop
point for A. In Figure 5.1.3 we show the sixteen components of f74S8) -
f71S) N S N f(S) N f(S), to give an idea of the structure of A.

~ So far we have essentially repeated the informal description of the horse.
shoe in Section 2.4. We can, however, achieve a more complete description
which contains information about the dynamics of each point by a con-
struction similar to the one we used for the one-dimensional mappings in
the previous section. In this construction, we note which horizontal band H i
or H, each iterate of a point x € A visits, and use this information as an
actual characterization of the point. Each point x € A will be characterized
byabi-infinite sequence, since here the mapisinvertible, unlike x — 2x (mod 1)
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A pi-infinite sequence is one whose inde

o X set1s all of 7: we
a = {ai}iZ-CD'

use the notation

A.1. There is a 1-1 cop
heorem 5.1 \ respondence ¢
oT' pi-infinite sequences of two symbols ¢ between A and the set T

Such that the Sequence b = ;
ined from the sequence a = DX) by shifiing 11 = ¢(f(x)) is
(}ZZZ set T has a metric defined by ting indices one Place: b; = q,

i+1-
d(a,b) = 3 52711 5 =9 ifa,=p,
i=— t l ifal.;{_. bi' (512)
The map pisa homeomorphismfrom AtoX endow
proor. The proof of this theorem

symbolic dynamics works. Take the t
The map is defined by the recipe

ed with thig metric.

) = {a}Z . with fi(x) e H,. (5.1.3)

mwords, xisin A if and onlyif £ (x) is in H, u H, for each i, and we associate
to x the sequence of indices that tells us which of H, and H, contains each
f(x). Unlike the map f = 2x (mod 1), this definition of ¢ is unambiguous
because H , and H, are disjoint. This description of ¢ leads immediately
to the shift property required by the theorem: since Y x) = Fi(f(x), it
follows that ¢( f(x)) is obtained from ¢(x) by shifting indices. To see that ¢
isboth 1-1 and continuous, we look at the set of x’s which each possess a
gven central string of symbols. Specifying bowms b iy by,....b, we
denote as R(b_ s b_ s 1, - . . - bo,...,b,) the set of x’s for whichfi(x)eHbi
for =m < i < n. We observe inductively that R(b_,,,...,b,)isa rectangle of
"eight =" ! and width A, obtained from the intersection of a horizontal
ind a vertical strip. As one lets m, n — o0, the diameter of the sets
Rib_,...,b,) > 0. Consequently, ¢ is both 1-1 and continuous.

The final point is that ¢ is onto. This is crucial for the applications of
“Mmbolic dynamics. The reason that ¢ is onto is that for each choice of
by, the set R(b_,,, ..., b,) is nonempty. To see this, reference to
flggre 3.1.2is helpful. Note that R(b, . ..,b,) is a horizontal strip mapped
:S{tically from top to bottom of the square S by f "“.1. Therefore,
s Kb b e
o ol strip extending across S. Similarly, we have already observ 2 ot
ofthﬂfs) N f™(S) consists of 2™ vertical strips. Each of these li"sinall
R Florm RGb_,,....b_ ,) and all sequences (b_.m, ooy f)-l)%ccur- p y),
:me;sz’cit“’b") is nonempty because every vertical SmpRIg oy )';
ki €very horizontal strip R(bo, - .-, b,) and T
;.} ") A Ry, .., b)),

:erNE ]1 .

Nlanglog - Verify that the central parts of the symb()] S

My *¥mby '8Ur¢ 5.1.3 are correct and label the remaining s
SeQuences,

equences attached to thp
haded rectangles by their
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The correspondence ¢ between A and X imparts to A a symbolic descrip.
tion which is an extraordinarily useful tool for understanding the dynamicg
of A. It is helpful to give a formal name to the process of “shifting indices

Thus
g:Z =X, (5.14)
o(a) = bwith b; = a;.,. The basic property of the

the shift map. 1s defined by ;
s the equation

theorem 1s NOW restated a

b-(flN=0"¢. (515

This equation eXpresses the topological conjugacy of f|» and a. Written as
fla=¢ oo ¢ ithas the immediate consequence that

fMa=¢ 'c0"= 9 (5.1.6)

n A to orbits of ¢ in >. The description of ¢ is

explicit enough that many dynamical properties are readily determined.
For example. a periodic orbit of period 1 for ¢ consists of a sequence which is

periodic: a; = di+n for all i in the sequence a. Fixing n, we readily count the

sequences with the property a; = di+n and find that ™ has 2" fixed points
in A. This set includes all points which are periodic with period nora divisor

of n.

so that ¢ maps orbits of f1

bits in A are of saddle type. Show that A
and homoclinic orbits. Show that A con-
w periodic orbits (with
ntable

ExERCISE 5.1.2. Show that all the periodic or
contains a countable infinity of heteroclinic

tains orbits which are not asymptotically periodic. List the first fe
periods, say <5)and locate them on Figure 5.1.3. Show that A contains an uncou

collection of nonperiodic orbits and describe their symbol sequences.
int: Two points of

EXERCISE 5.1.3. Display a point of £ whose g-orbit is dense in . (H )
which contains all

b3 are close if they agree in a long " central block ”: find a sequence
finite strings of 1's and 2s.)

The description of the horseshoe we have just given is “robust” W.lth
to imagit®

respect to small. changes in the mapping f. The reader should try
what changes w1!l take place if the assumption that f is rectilinear onH; Y ;
'S dropped. We imagine perturbing f to a mapping fin such a way tha
Jdcoblaq derivative of f can be nonconstant but still is close to thd i
Qual.ltatlvely, nothing changes. The sets S N f(S) - " 7n(S) will 8
consist of .2 " vertical” strips (which are, however, no long ) Ontal
angles). Slmllarly, the set f™S)n---n S will consist of 2" “horl,z
th“p }51 which are no longer exactly rectangles. Nonetheless, the set O P° . 1gaft
> Yh :Sf;]ff-tlt;ra;f:s remain in § form a set A which is topologic®” corlle of?
shift X. This result of Smale i early
structural stability theorem [1963, 1967] 1s an y
We - '
can summarize the results of this section as follows:
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Theorem 5.1.2. Tne horseshoe map f has an invariant Cantor set A such that -

(2) A contains a countable set of
b) A contains an uncountable se
() A contains a dense orbit.

per{()dic' orbits of arbitraril y long periods.
t of bounded honperiodic motions.

—_

e 2 y ~1 . i
\oreoter, dny sufficiently C' close

‘ OS¢ map f has an invariant Cantor set A with
75 [()p()logi('ally equivalent to f [A.

Wwe shall take up the question of nonlinear ma

. Ps possessing horseshoes
in the next section.

5.2. Invariant Sets and Hyperbolicity

The example described above, the Smale horseshoe
hasis for the way 1n which orbits of mappings, and hence of ordinary dif-
ferential equations, can be chaotic. Later in this chapter, we shall describe
¢ general theory of “Axiom A” dynamical systems which builds upon this
eximple. The concept of structural stability makes this generalization a very
netural one, but the class of Axiom A systems is not adequate to encompass
the various examples described in Chapter 2. There are many unresolved
Ssues about the details of the dynamics in these examples, so that our dis-
“ussion becomes more tentative toward the end of the chapter when we
apply the theory developed here to these examples. Of particular interest will
b'e the question of when g “ typical” trajectory can be expected to have the
éotic dynamical features of the horseshoe. Our aim being to describe what
*known, observed, and suspected, we include only details about the proofs
“results which we fee] are illuminating.
W lopological definitions are necessary at the beginning of our dis-
~%on. The horseshoe A described in Section 5.1 has a rather complicated
:’_pOJOgical structure, but it cannot be further split into closed invariant
)‘:ﬁ}: because there are orbits which are dense in A. We want to focus on
o, | . thf?Sﬁ, Which carry most of the interesting dynamical information ;)f ﬁ
5 g 5a dlsgrete or continuous flow, then a fundamenta¥ property of a
- “onsider s that they be invariant. (Recall from Section 1.§ that.the
'ant if ¢,(S) =S for all .) There are various kinds of invariant
5 0f o “Which interest us the most will be composed of asymptotic limit

\

. o . - om
"oy | 6n _ts' gdin let ¢, be a discrete or continuous flow, and recall fr

, provides a good intuitive
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2] The o limit so of x for ¢, is the set of accumulation points of

. _ : : ints of
s, % The o fimir set of x for ¢, is the set of ac(;urr?ulgtlon poT is an
1 % and ) limits of x are its asymptotic limit sets. O



AACT OV 2 a0
~ ‘ L _

'Y \u,s\\,‘wu;\'w SESLE0 IR

32 Invariant Sets and Hyperbolicity

1 horees .
Theorem 5.1.2. The horseshoe map f has an invariant Cantor set A such that:

(a) A contains a countable set of periodic orbits of arbitrarily | '
(b) A contains an uncountable set of bounded nonperiodi > o periods
ic motions.

(c) A contains d dense orbit.

Voreover., any sufficiently &Y sloga man T _
7 RTINS ap f has an invari .
fla r()pologzcally equivalent to Fla- ariant Cantor set A with

We shall take up the question of :
, : nonlinear m .
in the next section. aps possessing horseshoes
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