Connection form and Christoffel Symbols

To show:

\[\Gamma^i_k = \omega^i_k \]

where the \(\Gamma^i_k \) are the Christoffel symbols defined by

\[\nabla_X e_i = \Gamma^i_k(X)e_k \]

and where \(\omega^i_j = -\omega^i_j \) are the connection one-forms defined by

\[d\theta^i = \omega^i_k \land \theta^k \]

with \(e_i \) an orthonormal frame and \(\theta^i \) the corresponding dual coframe, so that

\[\theta^i(X) = \langle e_i, X \rangle \]

where \(\langle \cdot, \cdot \rangle \) is the Riemannian metric, and \(\nabla \) its Levi-Civita connection.

The proof is based on the “S\(_3 \)-lemma”

lemma. Any 3-tensor \(\gamma^i_{jk} \) which is antisymmetric in two indices and symmetric in two other indices is the zero-tensor: \(\gamma^i_{jk} = 0 \).

Metric compatibility implies that \(\Gamma^i_j = -\Gamma^i_j \). Indeed, \(\Gamma^i_j(X) = \langle e_i, \nabla_X e_j \rangle = -\langle \nabla_X e_j, e_i \rangle = -\Gamma^i_j(X) \).

Torsion freeness asserts that

\[\nabla_{e_i} e_j - \nabla_{e_j} e_i - [e_i, e_j] = 0 \]

Applying \(\theta^k \) to this vector equation yields

\[\Gamma^k_j(e_i) - \Gamma^k_i(e_j) - \theta^k([e_i, e_j]). \]

Now

\[d\theta^k(e_i, e_j) = e_i[\theta^k(e_j)] - e_j[\theta^k(e_i)] - \theta^k([e_i, e_j]) = -\theta^k([e_i, e_j]) \]

and the structure equations \(d\theta^k = \omega^k_s \land \theta^s \), upon application to the pair \((e_i, e_j) \) yields

\[d\theta^k(e_i, e_j) = \omega^k_j(e_i) - \omega^k_i(e_j). \]

Substituting, we find that

\[\Gamma^k_j(e_i) - \Gamma^k_i(e_j) + \omega^k_j(e_i) - \omega^k_i(e_j) = 0 \]

View this equation as one in which the \(\Gamma^k_j(e_i) \) are given and the \(\omega^k_j(e_i) \) are unknowns. A particular solution is

\[\omega^k_j(e_i) = \Gamma^k_j(e_i). \]

Any other solution differs from this one by a 3-tensor \(\gamma^k_{ji} \) which must satisfy \(\gamma^k_{ji} - \gamma^k_{ij} = 0 \), i.e. which is symmetric in \(ij \). But the \(\gamma^k_{ji} \) must be skew symmetric in \(k \) and \(j \), since both \(\omega^k_j \) and \(\Gamma^k_j \) are skew symmetric in these indices. By the \(S_3 \)-lemma, \(\gamma^k_{ji} = 0 \) and so our particular solution is the only solution.

Curvature. To show \(\Omega^l_j = d\omega^l_j - \Sigma_k \omega^l_k \land \omega^k_j \) encodes the curvature as a skew-symmetric matrix valued two-form, \(\Omega^l_j \), related in a simple way to the usual curvature tensor of the Levi-Civita connection viewed as an affine connection.

We have

\[d\nabla e = \omega e \]

meaning the following: For a given orthonormal frame \(e = \{ e_i \}_{i=1, \ldots, n} \), the quantity \(d\nabla e \) is the collection of tangent-bundle valued one-forms which maps \(V \in T_x M \) to \(\{ \nabla_X e_i \} \). The right hand side it the collection \(V \mapsto \{ \Sigma_i \omega^i_l(V)e_j \}_{i=1, \ldots, n} \). Then the curvature is given by

\[d\nabla d\nabla e = \Omega e \]

1
where the left hand side takes X, Y to \{${R(X, Y)(e_i)}\}$ while the right hand side yields \{${\sum_j \Omega^j_i(X, Y)e_j}$\} the one-form with values in the tangent bundle.

But

$$d\nabla^2 d\nabla e = d\nabla(\o e)$$

$$= (d\o)e - \o e$$

$$= (d\o - \o)e).$$

from whence we get that $\Omega = d\o - \o$, the desired result, when \o is appropriately interpreted using a matrix wedge product of matrix valued one-forms.