Solution to HW 7 problem 3:
Find a linear fractional transformation $F(z)=(a z+b) /(c z+d)$ which takes the upper half plane to itself and maps the hyberbolic line $x=0 y>0$ to the hyperbolic line $x^{2}+y^{2}=1, y>0$). [I dropped part of the problem.It is added in the solution below.]

SOLUTION.
a) Strategy: Since the transformation takes the upper half plane to itself, we can assume that a, b, c, d are real. Both hyperbolic lines are circles in the extended plane. Circles are determined by three points on them. If we can find a linear fractional transformation that takes three points on the first circle to three points on the second we will be done

The points $0, i, \infty$ lie on the first circle. The points $-1, i$, and 1 lie on the second circle. Set $F(z)=$ $(a z+b) /(c z+d)$. And insist that

$$
F(0)=-1, \quad f F i)=i, \quad F(\infty)=+1
$$

Plugging in, these equations read

$$
b / d=-1, \quad(a i+b) /(c i+d)=i, \quad a / c=1
$$

Thus

$$
b=-d, \quad(a i+b)=i(c i+d) \quad a=c
$$

Plugging the first and last results into the middle we get $(a i+b)=-a-b i$ which is equivalent to the single equation

$$
a=-b,
$$

(We have used that a, b are real here.) Thus

$$
F(z)=(a z-a) /(a z+a)=(z-1) /(z+1)
$$

the desired result.
b) Write $z=i y$ with y real. Later we will substitute in $y=e^{t}$ as asked. Then $F(i y)$ should run over the upper half-circle as $y>0$ variess over the positive real axis. We have:

$$
F(i y)=(i y-1) /(i y+1)
$$

Clearing denominators by multiplying through by the conjugate of the denominator, $-i y+1=-(i y-1)$, yields

$$
F(i y))=-(i y-1)^{2} /\left(y^{2}+1\right)=-\left(\left(1-y^{2}\right)-2 i y\right) /\left(y^{2}+1\right)
$$

Or: if we write $u+i v=F(i y)$ then

$$
u=y^{2}-1 /\left(y^{2}+1\right) ; v=2 y /\left(y^{2}+1\right)
$$

Observe these are precisely the formulas for 1 dimensional stereo projection $S^{1} \backslash\{N\} \rightarrow \mathbb{R}$, with the variable subsitutions (u, v) for (x, y) and y for $t \in \mathbb{R}$.

These formulae parameterize the circle, as t varies over the ENTIRE real line. To see how the semicircle is traversed, move from $t=0$ up to $t=+\infty$: $t=0$ is the point $x=-1, y=0, t=1$ is the point $x=0, y=1$ and $t=\infty$ is the point $x=1, y=0$, as it should be.

To get the hyperbolic formulae multiply top and bottom of our displayed expression for u, v by y^{-1} :

$$
u=\left(y-y^{-1}\right) /\left(y+y^{-1}\right), v=2 /\left(y+y^{-1}\right)
$$

Observe that if $y=e^{t}$ then $y+y^{-1}=2 \cosh (t)$ and $y-y^{-1}=2 \sinh (t)$ so that

$$
(u, v)=(\tanh (t), 1 / \cosh (t))
$$

