1. You are the life guard on a beach whose shore line is straight and runs directly North-South You spot someone drowning. You are a meters from the shoreline. They are out a meters away from the shoreline but also $2 a$ meters north of you.

Draw a geometric picture of the situation.
Attach!
You run exactly twice as fast as you swim. Consider two possible routes to swimmer:
Route 1: draw a straight line from your location to the swimmer. Follow that.
Route 2: aim to spot on the shoreline as close to the swimmer as possible: so: on the shore, but $2 a$ meters north, and then swimming directly west from there.

Verify that Route 2 is quicker than Route 1.
Attach picture of two routes.
In route 1 we travel the diaganal of two congruent squared, each of side a, one in the land on in water. So each has length $\sqrt{2} a$. Since $($ speed $)=($ length $) /($ time $)$ we have $($ time $)=$ length $/($ speed $)$. Thus the time of travel for route 1

$$
t_{1}=\sqrt{2}\left(a / v_{l}\right)+\sqrt{2}\left(a / v_{w}\right)
$$

where v_{l} is our speed on land and v_{w} our speed in the water. Now $v_{L}=2 v_{q}$ so that

$$
t_{1}=[(1 / 2) \sqrt{2}+\sqrt{2}]\left(a / v_{w}\right)
$$

In route 2, the path traveled on land is the hypotenuse of a right triangle with sides $a, 2 a$ so has length $\sqrt{5} a$, while the path in the water is straight out so has length a. By the same reasoning the time for route 2 is

$$
t_{2}=[(1 / 2) \sqrt{5}+1]\left(a / v_{w}\right)
$$

The question then: $t_{2}<t_{1}$? becomes the question: $[(1 / 2) \sqrt{5}+1]<[(1 / 2) \sqrt{2}+\sqrt{2}]$?
Use a calculator now. $\sqrt{2} \cong 1.414$, while $\sqrt{5} \cong 2.236$. Thus we have the first number is about 2.118 while the second is about 2.121.

Yes: the 2 nd route is faster. (Not by much.)
Ratio of times: $2.118 / 2.121=.998$

Problem 2: Basically the same, same routes, same situation, except now we run 10 times as faster than we swim : $v_{L}=10 v_{w}$. The ratio $1 / 2$ which occurs in the time formulae multiplying the land distances now becomes $1 / 10$

We get:

$$
\begin{gathered}
t_{1}=[(1 / 10) \sqrt{2}+\sqrt{2}]\left(a / v_{W}\right) \\
t_{2}=[(1 / 10) \sqrt{5}+1]\left(a / v_{W}\right)
\end{gathered}
$$

These numbers become 1.555 and 1.236 times a / v_{w} so that now the ratio is about .795 .

Reality check and Aside: Some people got this ratio to be around 2 instead of .8 . As a reality check imagine that $v_{L}=+\infty$ then the time of flight on the land is zero. In that case $t_{2} / t_{1}=1 / \sqrt{2}$ which is approximately .704. The factor of $1 / 10$ appearing in both t_{1} and t_{2} is v_{W} / v_{L} and tends to zero as $v_{L} \rightarrow \infty$. As long as $v_{W}<v_{L}<\infty$ we have $t_{2} / t_{1}>.704$..

Problem 3.
We take the hint.
Then FIGURE HERE!!
The length of the route in medium 1 is $\sqrt{a_{1}^{2}+y^{2}}$ so the time-of-flight in medium 1 is $\sqrt{a_{1}^{2}+y^{2}}\left(/ 1 v_{1}\right)$.
The length of the route in medium 2 is $\sqrt{\left(y-b_{2}\right)^{2}+a_{2}^{2}}$, so its time-of-flight is $\sqrt{\left(y-b_{2}\right)^{2}+a_{2}^{2}}\left(1 / v_{2}\right)$
The total time of flight then is

$$
T=T_{1}+T_{2}=\left(1 / v_{1}\right) \sqrt{a_{1}^{2}+y^{2}}+\left(1 / v_{2}\right) \sqrt{\left(y-b_{2}\right)^{2}+a_{2}^{2}}
$$

Now, use the chain rule to differentiate the square-roots arising in pythagoras' theorem, we have that

$$
d T_{1} / d y=\left(1 / v_{1}\right) y / \sqrt{a_{1}^{2}+y^{2}}
$$

while

$$
d T_{2} / d y=\left(1 / v_{2}\right)\left(y-b_{2}\right) / \sqrt{\left(y-b_{2}\right)^{2}+a_{2}^{2}}
$$

Now, from the figure, we recognize the fractions arising as (opposite/hypotenuse) in each situation! Thus:

$$
\begin{gathered}
d T_{1} / d y=\left(1 / v_{1}\right) \sin \left(\theta_{1}\right) \\
d T_{2} / d y=-\left(1 / v_{2}\right) \sin \left(\theta_{2}\right)
\end{gathered}
$$

*** carefuly for minus sign - check out pic.! ** so that

$$
d T / d y=\left(1 / v_{1}\right) \sin \left(\theta_{1}\right)-\left(1 / v_{2}\right) \sin \left(\theta_{2}\right)
$$

Setting equal to zero yields Snell's law in the form

$$
\sin \left(\theta_{1}\right) / \sin \left(\theta_{2}\right)=v_{1} / v_{2}
$$

and since $v_{1} / v_{2}=n_{2} / n_{1}$ we get the original form of Snell also.

