34 2 Euclid’s approach to geometry

We can certainly extend a given rectangle to a square and hence recon-
struct the square on the hypotenuse. The main problem 1s to reconstruct
the right-angled triangle, from the hypotenuse, so that the other vertex lies
on the dashed line. See whether you can think of a way to do this; a really
elegant solution is given in Section 2.7. Once we have the right-angled
triangle, we can certainly construct the squares on its other two sides—in
particular, the gray square equal in area to the gray rectangle,

Exercises

Tt follows from the Pythagorean theorem that a right-angled triangle with sides 3
and 4 has hypotenuse v/37+4% = +/25 = 5. But there is only one triangie with
sides 3, 4, and 5 (by the SSS criterion mentioned in Exercise 2.2.2), so putting
together lengths 3, 4, and 5 always makes a right-angled triangle. This trangle 1s
known as the (3,4, 5) triangle.

2.5.1 Verify that the (5,12,13), (8,15,17), and (7,24,25) triangles are right-
angled.

2.5.2 Prove the converse Pythagorean theorem: If a.b,c > 0 and a4 b = 2,
then the triangle with sides a, b, c is right-angled.

2.5.3 How can we be sure that lengths a,b,¢ > 0 with a? +b? = ¢? actually fit
together to make a triangle? (Hint: Show thata+ & > ¢.)

Right-angled triangles can be used to construct certain irrational lengths. For
example, we saw in Section 1.5 that the right-angled triangle with sides 1, 1 has
hypotenuse v/2.

2.5.4 Starting from the triangle with sides 1, 1, and /2, find a straightedge and
compass construction of V3.

2.5.5 Hence, obtain constructions of 1/n forn=2,3,4.5,6,....

2.6 Proof of the Thales theorem

We mentioned this theorem in Chapter 1 as a fact with many interesting
consequences, such as the proportionality of similar triangles. We are now
in a position to prove the theorem as Euclid did in his Proposition 2 of
Book V1. Here again is a statement of the theorem.

The Thales theorem. A line drawn parallel to one side of a triangle cuts
the other two sides proportionally.

2.6 Proof of the Thales theorem

The proof begins by considering triangle ABC, with its sides AB anc
cut by the parallel PQ to side BC (Figure 2.15). Because PQ is parail
BC, the triangles POB and PQC on base PQ have the same height, nar
the distance between the parallels. They therefore have the same area.
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Figure 2.15: Triangle sides cut by a parallel

If we add triangle APQ to each of the equal-area triangles PQOB
POC, we get the triangles AQB and APC, respectively. Hence, the I:
triangles are also equal in area.

Now consider the two triangles—APQ and PQB—that make up fr
gle AQB as triangles with bases on the line AB. They have the same he

relative to this base (namely, the perpendicular distance of O from
Hence, their bases are in the ratio of their areas:

|AP}  area APQ
|[PB|  area POB’

Similarly, considering the triangles APQ and POC that make up the triar
APC, we find that
AQ|  area APQ

|OC] ™ area PQC”

Because area POB equals area POC, the right sides of these two equati
are equal, and so are their left sides. That is,

4P| _ laQ
7B~ jocl

In other words, the line PQ cuts the sides AB and AC proportionally.



