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INTRODUCTION 

Given a mapping z - f(z, A), where f is a rational function of both z and A, 
consider the iterated maps = f ( f ’ ( .  . .J(( io) .  . .))of the starting point z,. Toachievea 
global understanding of these iterates’ behavior, it is necessary to allow A and zo, hence 
z ,  also, to be complex variables. Contrarily, the extensive recent studies of the 
mapping z - Xz( 1 - z ) ,  for example, those found in Reference 1 and in the present 
volume, are largely restricted to X real E [ I ,  41 and z real E [0, I ] .  Hence, they are 
powerful but local and incomplete. The global study for unrestricted complex X and z 
throws fresh light upon the results of these restricted studies, and reveals important 
new facts. In  this light, an immediate change of emphasis from the restricted studies to 
even more general mappings {x - f ( x ,  y ,  A): J’ - g(x. y .  A) ]  appears to be 
premature. 

The present paper stresses the role played in the unrestricted study of rational 
mappings by diverse fractal sets. including A-fractals (sets in the X plane), and 
z-fractals (sets in  the z plane). Some are fractal curves (of topological dimension I ) ,  
and others are fractal “dusts” (of topological dimension 0). The z-fractals are of 
special interest, since they can be interpreted as the fractal attractors of appropriately 
defined (generalized) discrete dynamical systems, based’ upon inverse mappings. This 
role is foreshadowed in the work of P. Fatou’.’ and of G .  Julia4 (and even that of H. 
PoincarC, in the related context of Kleinian groups), but the topic was never pursued. 
Indeed, an explicit and systematic concern with fractals only came with my book,’ in  
which, for the first time, the notion itself was defined and given a name: A fractal set is 
one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the 
topological dimension. This paper’s illustrations are fresh (and better than ever) 
examples of what this definition implies intuitively. The text is a summarized excerpt 
from Reference 6. A related excerpt concerning the fractal attractors of Kleinian 
:roups is Reference 7. The final section comments on “strange” attractors. 

THE A-FRACTAL Q 

We denote by Q the set of values of A with the property that the initial points zo for 
which 1.u.b. I z, I i r include a closed domain (that is, a set having interior points). It is 
well known that it suffices that 1.u.b. I z, 1 < = hold when the initial point is the 
“critical” point zo = 0.5. The portion of Q for which Re(X) :, 1 is illustrated in FIGURE 
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FIGLRE I .  Complex plane map of [he A-domain Q. The real axis of the A-plane points up from 
A ~- I .  The center of the circle is A = 2 and the tip of the whole is A = 4.  

I ,  the rcrnainder of Q being syrnrnctric to this tigure with respect to the line 
Re(h) = 1 .  

A striking fact, which I think is new, beconics apparent here: FIGURE 1 i s  made of 
several disconnected portions, as follows. 

The Domain of C’onjluence h. and Its  Fractal Boundary 

The most visible feature of F I G U R F  I is the large connected domain k surrounding 
h = 2. This L splits into a scqucnce of subdomains one can introducc i n  successive 
slages. 
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The first stage subdomain, Lo, is constituted by the point X = 1 plus the open disc 
I X - 2 1 < 1 (left blank on FIGURE 1 to clarify the remainder’s structure). Iff X E Lo. 
there is a finite stable fixed point. (Proof: When ReX > I ,  the stable limit point, if it 
exists, is 1 - I / X ;  the condition If’( 1 - l / X )  I < 1 boils down to 1 X - 2 I < 1.) 

The remaining, and truly interesting, portion of L is shown in black on FIGURE 1. 
The fact that this black area is “small” means that the mapping z - Xz(1 - z )  is 
mostly not bizarre. However, many interesting and bizarre,behaviors (some of them 
unknown so far, and others thought to be associated with much more complex 
transformations) are obtained here in small but nonvanishing domains of A. 

Each of the second stage subdomains of 6: is indexed by one or several rational 
numbers a/b. The subdomain L(a/P)  is open, except that we include in it the limit 
point where it attaches “sprout”-like to 6,; this is the point X - 2 = -e-” = 

-exp[-27ri(a/@)]. When X E 6 ( a / @ ) ,  the sequence z ,  has a stable limit cycle of 
period @. This cycle can be obtained through a single @-fold bifurcation by a 
continuous change of X that starts with any stable fixed point, for example, with the 
stable fixed point zo = 0.5 corresponding to X, = 2. 

Each of the third stage subdomains of L is indexed by two rational numbers: 
6:(aI/@,, a,/@,); it is open, save for the point where it attaches, again sprout-like, to 
L ( ( Y ~ / @ ~ ) .  When X E L ( ( Y ~ / @ ~ ,  a2/@,), the sequence 2, has a stable limit cycle of 
period resulting from two successive bifurcations, respectively @,-fold and @,-fold. 
which started with a stable fixed point in  h,. 

Further series of subdomains are similarly indexed by increasingly many rational 
numbers ~ v ~ / 3 ~  . . . a,/@,. 6 combines all the values of X that lead either to stable limit 
points of z ,  or to stable limit cycles that can be reduced to stable limit points by the 
inverse of the bifurcation process. I propose for this process the term confluence, which 
is why I call 6 the domain of confluence. 

The domains S ( a / @ )  etc. are nearly disc shaped, but not precisely so. More 
gcnerally, the boundary of each sprout is nearly a reduced scale version of the whole 
boundary of 6. Recalling the classic construction of the “snowflake curve,”’ one can 
have little doubt but that the boundary of L is a fractal curve. 

The Transformed Domain A 

Using the often invoked transformed variable w = (22 - 1)X/2 re-expresses the 
mapping z - Xz( 1 - z )  into w - p - w2, where p = (X2/4) - (X/2). This leads to the 
replacement of the A-set L by a p-set A. The counterpart to the discs 1 X - 2 1 5 1 
( E  6,) and I X I 5 I (the symmetric of Lo with respect to Re(X) = I )  is a shape A, 
bounded by the fourth order curve of equation p = e2‘@/4 - e‘”2. The sets A and A, 
will be needed momentarily. Hence, the scholars‘ familiar hesitation between the 
notations involving X or is not resolved here: the shape 6, is far simpler than A,, but 
A is more useful than 6. 

The Domains of Nonconfluent. or K-Conpuenr. Stable Cycles 

In addition to L,  the domain Q is made of many smaller subdomains. Indeed, I 
discovered that at least some of what are, apparently, specks of dirt or ink on FIGURE 1 
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are indeed real: more detailed maps reveal a well-defined “island” whose shape is like 
that of A. except for a nonlinear one-to-one deformation. Each island is, in turn, 
accompanied by subislands. doubtless ad infinitum. 

When X lies in an island’s deformed counterpart to Lo, zn has a stable limit cycle of 
period w > I .  When A lies i n  an island’s deformed counterpart to h(cu,/@,, , . . a,/@,), 
z ,  has a limit stable cycle of period mel, . . . e,. One would like again to be able to 
reduce these cycles, through successive confluences provoked by continuous changes in 
A, to the fixed point X, = 2. But this is impossible. None of these fixed cycles is 
confluent to a fixed point. 

Some islands of L that intersect the real axis create intervals that have been 
previously recognized and extensively studied. I t  was clear that a cycle with X in such 
an interval is not confluent to X = 2 through real values of A. We see that it is not 
confluent through complex As, either. 

7 h e  Radial Patterns in [he Distribution of the Doniains of Nonconpuence 

The islands that intersect the real axis can be called “subordinate” to the value of 
X = 3.569, which is known to mark the right-most point of Lo and corresponds to an 
infinite sequence of successive 2-bifurcations. More generally, I observe that every 
island is subordinate to a X corresponding to an infinite sequence of successive 
bifurcations. The subordination is spectacular (on a detailed A-map) when the first of 
these bifurcations is of high order, that is, when 8 , / 2 n  = cuI/PI with a high value of 6,. 
But the subordination is already apparent in  FIGURE I for the outermost point of the 
sprout linked to L,,  at 0 , /2n = lj3. Moreover, the islands are arrayed along directions 
radiating from an “offshore point.” In  particular. i f  h corresponds to several successive 
bifurcations. the other If ,  do not aKect the number of radii. For details, see Reference 
6. 

THE :-FRACTAL 3 ( X )  

We proceed now to a family of 7-plane fractals associated with z - Xz(1 - =). 

Dc<finition 

First, recall that z = x is a stable lixed point for all A. (Proof In  terms of u = I/:, 
the mapping is I )  - g ( u )  = u ’ / X ( u  - 1); we see that ~ ’ ( 0 )  = 0 c: 1 .) For each A, the 
=-fractal 3 ( X )  is defined as the (closed) set of points zo such that 1.u.b. 1 z ,  I # a ,  that 
is. as the set of points whose iterates fail to converge to X .  This set, 3(X) ,  is never 
empty: it includes 2” = 0, which is an unstable fixed point. all of whose iterates also 
satisfy z ,  = 0, plus all the finite preimages of zo and their limit points. Furthermore, 
3 ( A )  is always bounded: i t  is easy to see that it is contained-with room to spare!--in 
the circle I z ~ 0.5 1 = 2.5. The boundary of Y(X) is to be denoted by 3 * ( X ) .  

FI(;URE 2 shows an example involving a 7-fold bifurcation. 
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FIGURE 2. M a p  of ? ( A )  for A near a 7-fold bifurcation 

Exceptional Values ofh, for  Which 3 ( A ]  is a Standard Shape 

The only such values of X are X = 4, X = 2, and X = a.  

For X = =, 3 * ( ~ ) ,  hence 3 ( = ) ,  reduces to the points 0 and 1. Obviously, z ,  = 

except conceivably for zo f 0 and zo = 1 :  these values yield an indeterminate 
expression z, = 0 . m. The expression is made determinate by noting that the inverse 
transform leaves these points invariant. The relevance of the inverse transform will be 
made clear below. 

For X = 4, 3*(4), hence 3(4) ,  reduces the segment [0, 11. Indeed, introducing the 
new variable w = - (2z  - 1) changes z - z( 1 - z )  into w - 2wz - I ,  and the further 
new variable u = cos-lw yields N - 2u, hence id,, = 2"u. When Im(u,) # 0, I Im(u,) I - 00 and I z , ~  - cc. Hence, the u coordinate representation of 3(4)  is the real axis, 
implying that w E [ - 1 , 1 ]  and z E [0, I ] .  

For X = 2, the same variable w changes i - 2z( 1 - z )  into H' - w2,  meaning that 
3 * ( 2 )  is the circle1 w1 = 1, i.e.,I z - 0.5 I = 0.5, and 3 ( 2 )  is the closed disc bounded by 
this circle. Clearly, w, - 0, hence z ,  - 0.5 iff i,, E 3(?) - 3 * ( 2 ) ,  and w, - =, hence 
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z n -  1- i f f  (C denoting thecomplex plane) zo E C - Y(2).  When zo E 3*(2), so that 
z,, = exp(2*i@), zn is ergodic on 3*(2)  iff @ / 2 ~  is irrational; if  @/2x = a/@,  z ,  follows 
an unstable cycle of period @. 

The preceding examples show that B(X) can be of topological dimension 0 
(isolated points or dusts), 1 (curves), or 2 (domains). For all other values of A, 3 ( X )  is 
a nonstandard set, namely a fractal, but examples of every topological dimension 
continue to be encountered. Due to lack of space, only a few can be described here (see 
Reference 6). 

The Shape of 3(X)  When X E L 

As X moves away from X = 2 a little, the circle Y*(2) “crumples” locally, then 
bigger folds gradually appear. As long as X E Lo. the topology of 3 * ( X )  remains that 
of a circle. As X reaches a point of @fold bifurcation, the topology of 3*(h)  changes: it 
becomes “pinched” at an infinity of points, to each of which converge @ points of 
Y*(X). For example, as X follows the real axis to the right and X - 3, 3 ( X )  converges 
to the characteristic shape shown in FIGURE 3. ( I  call it the San Marco shape, in honor 
of the Basilica in Venice plus its reflection in a flooded Piazza and an infinite 
extrapolation.) When a @,-fold bifurcation is followed by a &-fold bifurcation, the 
@,-fold and the @,-fold pinches generally occur a t  different points. In  any event, Y(X) 
remains connected as long as X lies in the domain of confluence L. 

The Shape ofB(X) When X E Q - L 

I discovered that a totally dilferent shape of B(X) prevails when X lies in a domain 

1. The interior of 3 ( X )  ceases to be connected. 
2. Components of the interior of Y(h) have a common shape, except for 

deformations induced by the mapping z - Xz( I - z )  itself. 
3. This common shape is close to that of the (connected) interior of 3(X*), where 

A*  is the point that is mapped upon A when the domain of confluence L is mapped 
nonlinearly on the island under consideration. 

4. There is strong evidence that 3 ( X )  itself is connected because. in addition to the 
components of its interior and their boundaries. i t  includes a web of fractal 
filaments. 

of nonconfluence. 

The Shape of 3 ( X )  When X is un lrrational Boundary Point of L 

An irrational boundary point of L is defined as a boundary point of .L other than 
the rational points where a “sprout” is attached to either Lo or another sprout. Letting 
X tend from an interior point of rC to an irrational boundary point provokes either an 
infinite sequence of finite-fold bifucations. or an immediate %-fold bifurcation (as 
when A - exp(2~i@) with irrational @), or a finite sequence of finite-fold bifurcations 
ending on an x-fold bifurcation. 

I conjecture that, in either case, Y(X) tends to a curve, which is also the limit of 
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FIGURE 3 .  Composite 3 ( X )  for several real valued A’s: X - I (whole picture), X = 1.5 (from 
mid-grey to black), h = 2.5 (dark grey to black) X = 2.9 (black only). The shape for X = 3 i s  
called the San Marco shape in  the text. The two points that are common to all four diagrams are 
z = O a n d z =  I .  
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? * ( A ) .  In  the case of the real irrational points, which lie on the X segment [3.569,4]. 
this conjecture is known to be true, since 3 ( X )  is a subset of the real line. It is known 
that the connectedness of ?(A)  depends upon the value of X. An interesting open 
question arises: How is the connectedness of 9 ( X )  related to the properties of nonreal 
values of A'? 

The Shape of 3 / X j  when X @ Q 

In his first publication on thz global properties of iteration, Fatou remarked that, 
when X is real and .14, 3 ( X )  is nearly a Cantor set.' I n  the new terminology of 
Reference 5. it is a linear fractal dust. 

To make this result perspicuous, let us digress to note that the classic Cantor 
ternary set is the 3-set corresponding to the special ''tent" mapping defined by 
: + 1.5 - 3 1: - 0.51. Under this mapping, indeed, all the points in the open 
mid-third, z El'/]. %[. yield z ,  < 0, hence lim z ,  - -=c. All the points in the open 
segments, z C ]'/9. '/g[ or z C ]'/9, " g [ ,  yield z ,  > 0, but z2 < 0, hence again z , -  --a , et 
cetera. The complement of these excluded segments is "(A) .  Its kth ternary points, 
defined as the endpoints of a segment excluded at  the kth stage, yield z ,  = 0 for n 2 k ,  
and hence converge to an unstable limit point. Among the nonternary points of 3(X) ,  
some converge to an unstable cycle of period > 1,  while others are  ergodic. 

Using the definition in Reference 8, this 3 ( X )  is afractal dust.  It is a dust because 
it is totally discontinuous. so that its topological dimension is D, = 0. On the other 
hand, its fractal dimension is D = log 2/log 3 > 0. Because D > D,, this is a 
fractal. 

THE :-FRACTAL ? ( A )  AS FRACTAL ATTRACTOR 

A mapping such as : - A;( 1 - z )  is routinely viewed today as a dynamical 
system Its attractor is dull (e.g., a single point or a finite number of points). However, 
since J(X) is the repeller set for 2 - A:( 1 - z ) ,  i t  is by the same token the attractor set 
for the inverse mapping z - 0.5 + t d-. with c = 2 1 .  . .  ~ 

More precisely, the last statement only becomes valid after the notion of dynamic 
system is appropriately extended. An extension is required because the above inverse 
mapping is not unique, but depends upon a parameter c, to be called "label"; hence, it 
is a 1 to 2 mapping, and the kth iterate is a I to 2' mapping. Considering all these 
iterates together, Julia showed that thcy are everywhere dense on 9*(X).4 But this is 
not a satisfactory rcsult, because the intuitive notion of dynamical systems demands a 
single-valued mapping. 

To achieke this goal, I propose that one set a discrete dynamical system in the 
product space of the complex plane C by the label-set made of two points + and -. 
W e  take it that the c n  sequencc proceeds according to its own rules, independently of 
the z ,  sequence, while the zn sequence is ruled by the t, sequencc. For example, the t, 
sequencc may be a Bernoulli proccss of independent random throws of a fair coin, or a 
more general ergodic random sequence. The conclusion seems inescapable (though I 
have not tested the details) that  3ny ergodic sequence c,, generates a trajectory whose 
projection of the C plane is dense on 3 * ( h ) .  
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FIGURE 4. The 64 000 first positions of a dynamic system attracted to the San Marco fractal 
shape. 

For A = 2, when 3 * ( h )  is a circle, the invariant measure is known to be uniform. 
For h = 4, when 9 * ( h )  is [O, I ] ,  the invariant measure is readily seen to be the real 
axis projection of a uniform measure on a circle; hence, it has the “arc-cosine” density 
r - ’ [ x ( l  - .u)]-’/’. Both are found empirically to be very rapidly approximated by 
sample dynamical paths. See also the approximation of the San Marco shapes in 
FIGURE 4. On the other hand, the most interesting cases, where Y*(A) is extremely 
convoluted, as in FIGURE 2, involve a complication. The limit measure (5 invariant 
measure) on 3 * ( h )  is extremely uneven. The tips of the deep “fjords” require very 
special sequences of the L, to be visited, and hence are visited extremely rarely 
compared to the regions near the figure’s outline. 

A DIGRESSION CONCERNING “STRANGE ATTRACTORS” 

Lately, the term “attractor” has often been associated with the adjective 
“strange.” and the reader may legitimately wonder whether strange and fractal 
attractors have anything in common. Indeed, they do. 

First Poinl 

The fractal (Hausdorff-Besicovitch) dimension D has been evaluated for many 
strange attractors, and found to exceed strictly their topological dimension. Hence, 
thesc attractors (and presumably other ones, perhaps even all strange attractors) are 
fractal sets. The D of the Smale attractor is evaluated in Reference 8. And the 
Saltzman-Lorenz attractor with I )  = 40, cr = 16, and b = 4 yields D Z= 2.06; this result 
was obtained independently by M. G .  Velarde and Ya. G. Sinai, who report it in 
private conversations but neither of whom has, to my knowledge, published it. (Last 
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minute addition: A preprint by H. Mori and H .  Fujisaka confirms my value of D for 
the Smale attractor and the Velarde-Sinai value of D for the Saltzman-Lorenz 
attractor. For the HCnon mapping with n = 1.4 and h = 0.3, i t  finds that D = 1.26.) 
The fact that D 2 2.06 is very close to 2. but definitely above 2. means that the 
Saltzman-Loren7 attractor is definitely not a standard surface, but that i t  is not 
extreniely far from being one. 

Since the relevance of D in this context may puzzle those who only know of fractal 
dimension as a measure of the irregularity of continuous curves, let me point out that  
in this instance. D is not a measure of irregularity but of the way smooth surfaces pile 
upon each other-a variant of the notion of fragmentation, which is also studied in 
Reference 5 .  

Let us also recall from Reference 5 that the Hausdorff-Besicovitch discussion was 
not the sole candidate for fractal dimension, but was selected because ( 1 )  it is the most 
thoroughly studied, ( 2 )  i t  has theoretical virtues, and ( 3 )  in most instances, the choice 
does not matter, because diverse reasonable alternative dimensions yield identical 
values. In an interesting further development i n  the same direction, a relation has 
recently been conjectured to exist, and verified empirically on examples. between a 
strange attractor’s fractal dimension and its Lyapunov numbers (preprints by H. Mori 
and H .  Fujisaka and by D. A .  Russell, J .  D. Hanson, and E. Ott . )  

Second Point 

One is tempted, conversely, to ask whether the fractal attractors I study are 
“strange.” I t  depends which meaning is given to this last word. Using its old-fashioned 
“meaning,” as a milder synonym to “monstrous,” “pathological,” and other epithets 
once applied to fractals. the answer is “Yes. but why bother to revive a term whose 
motivation has vanished when I‘ractals were shown. by Reference 5. to be no more 
strange than coastlines or mountains.“ Unfortunately, the term “strange” has since 
acquired a technical sense, one so exclusive that the Saltzman-Lorenz attractor must 
be called “strange-strange,” In this light. many fractal attractors of my dynamic 
systems are  not strange at  all. Indeed “strangeness“ reflects nonstandard topological 
properties, with the nonstandard fractal properties mentioned above coming along as a 
seemingly inevitable “overhead.” I n  this sense ( I )  :I topological circle (intuitively. a 
closed curve without double points) is not strange, however crumpled it may be; hence, 
(2)  the fractal attractors ?* (A)  for I h - 2 I < 1 are  surely not strange. 

However. the fractal attraclors associated with other rational mappings 1 have 
studied are topologically peculiar.h Thus, the answer to our question is confused. But it 
is not :in important question: the term “strange” has, i n  my opinion. exhausted its 
usefulness. and ought to be abandoned. 

I .  
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