MATH 145-HW1 SOLUTIONS

YUSUF GOREN

(A) Since the function has positive slope m for $x<\frac{1}{2}$ and $f(0)=0$, we get $T_{m}(x)=m x$ for $x \leqslant \frac{1}{2}$. On the other hand, T_{m} has slope $-m$ for $x>\frac{1}{2}$ and hence $T_{m}(x)=-m x+b$ for some $b \in \mathbb{R}$. Since T_{m} is continuous at $x=\frac{1}{2}, \frac{m}{2}=T_{m}\left(\frac{1}{2}\right)=-\frac{m}{2}+b$, which implies that $b=m$. Therefore

$$
T_{m}(x)=\left\{\begin{aligned}
m x, & x \leqslant \frac{1}{2} \\
-m x+m, & x \geqslant \frac{1}{2}
\end{aligned}\right.
$$

(B) Assume that $0<m<1$. We shall prove the claim in two cases
(i) In this case, we investigate seeds $x_{0} \leqslant \frac{1}{2}$.

Claim 1. For $x_{0} \leqslant \frac{1}{2}, T_{m}^{n}\left(x_{0}\right)=m^{n} x_{0}$ and $T_{m}^{n}\left(x_{0}\right)<\frac{1}{2}$ for all $n \in \mathbb{N}$.
Proof. For $n=1$, we have $T_{m}(x)=m x_{0}$. If $x_{0}<0, m x_{0}<0$ since $m>0$ and therefore $m x_{0}<\frac{1}{2}$. If $x_{0} \geqslant 0, m x_{0}<x_{0} \leqslant \frac{1}{2}$ since $m<1$ and $x_{0} \leqslant \frac{1}{2}$. In both cases, we conclude that $T_{m}^{n}\left(x_{0}\right)<\frac{1}{2}$ and that the statement holds for $n=1$. Assume the statement is true for n. Now

$$
T_{m}^{n+1}\left(x_{0}\right)=T_{m}\left(T_{m}^{n}\left(x_{0}\right)\right)=T_{m}\left(m^{n} x_{0}\right)=m \cdot m^{n} x_{0}=m^{n+1} x_{0}
$$

where the penultimate equality follows from assuming that the claim holds for n. Now, since $m^{n} x_{0}<\frac{1}{2}$, the same argument we had for case $n=1$ holds and hence $m^{n+1} x_{0}<\frac{1}{2}$. Therefore, by induction, the claim holds for all $n \in \mathbb{N}$.

Since $m<1, \lim _{n \rightarrow \infty} T_{m}^{n}\left(x_{0}\right)=\lim _{n \rightarrow \infty} m^{n} x_{0}=0$. Hence all $x_{0} \leqslant \frac{1}{2}$ is in the basin of attraction of 0.
(ii) Now, assume that we have the seed $x_{0} \geqslant \frac{1}{2}$. Then $x_{1}=T_{m}\left(x_{0}\right)=-m x_{0}+m=m\left(1-x_{0}\right)$. Since $x_{0} \geqslant \frac{1}{2}$ and $m<1, m\left(1-x_{0}\right)<\frac{1}{2}$ and therefore, by (i), $x_{n+1}=T_{m}^{n}\left(x_{1}\right)=m^{n} x_{1}=m^{n+1}\left(1-x_{0}\right)$. Similarly, since $m<1, \lim _{n \rightarrow \infty} T_{m}^{n}\left(x_{0}\right)=\lim _{n \rightarrow \infty} m^{n}\left(1-x_{0}\right)=0$. Hence all $x_{0} \geqslant \frac{1}{2}$ is also in the basin of attraction of 0 .

Culminating the results in both cases, we conclude that the basin of attraction of 0 is \mathbb{R}.
(C) Assume that $m>1$. Again, we examine two cases.
(i) We start by investigating orbits with seeds $x_{0}<0$.

Claim 2. For $x_{0}<1, T_{m}^{n}\left(x_{0}\right)=m^{n} x_{0}$ and $T_{m}^{n}\left(x_{0}\right)<0$ for all $n \in \mathbb{N}$.

Date: January 18, 2013.

Proof. For $n=1$, we have $T_{m}(x)=m x_{0}$. Since $x_{0}<0$ and $m>1, m x_{0}<x_{0}<0$ and thus the statement holds for $n=1$. Assume the statement is true for n. Now

$$
T_{m}^{n+1}\left(x_{0}\right)=T_{m}\left(T_{m}^{n}\left(x_{0}\right)\right)=T_{m}\left(m^{n} x_{0}\right)=m \cdot m^{n} x_{0}=m^{n+1} x_{0}
$$

where the penultimate equality follows from assuming that the claim holds for n. Now, since $m^{n} x_{0}<0$, the same argument we had for case $n=1$ holds and hence $m^{n+1} x_{0}<0$. Therefore, by induction, the claim holds for all $n \in \mathbb{N}$.

Following the claim, we observe that $\lim _{n \rightarrow \infty} T_{m}^{n}\left(x_{0}\right)=\lim _{n \rightarrow \infty} m^{n} x_{0}=-\infty$ since $m>1$ and $x_{0}<0$.
(ii) We continue by investigating orbits with seeds $x_{0}>1$. In this case $x_{1}=T_{m}\left(x_{0}\right)=m\left(1-x_{0}\right)$. Since $x_{0}>1$ and $m>0, x_{1}<0$. Therefore, by case (i), $x_{n}=T_{m}^{n-1}\left(x_{1}\right)=m^{n-1} x_{1}=m^{n}\left(1-x_{0}\right)$.
We again observe that $\lim _{n \rightarrow \infty} T_{m}^{n}\left(x_{0}\right)=\lim _{n \rightarrow \infty} m^{n}\left(1-x_{0}\right)=-\infty$ since $m>1$ and $1-x_{0}<0$.
As we saw in (i) and (ii), any orbit having a seed outside of the closed unit interval $[0,1]$ diverges to $-\infty$.
(D) For this part, we assume that $m=3$, so we consider

$$
T(x)=\left\{\begin{array}{rr}
3 x, & x \leqslant \frac{1}{2} \\
-3 x+3, & x \geqslant \frac{1}{2}
\end{array}\right.
$$

Let $I=[0,1]$ and $I^{C}=\mathbb{R}-I$. It is easy to see that $T\left(\left[0, \frac{1}{3}\right]\right)=T\left(\left[\frac{2}{3}, 1\right]\right)=I$ and $T\left(\left(\frac{1}{3}, \frac{2}{3}\right)\right)=\left(1, \frac{3}{2}\right) \subset I^{C}$. So, iterations of T will map first and third thirds of I back to itself and middle third outside of I, which will be eventually mapped to $-\infty$ by part (C). In order to achieve a precise proof of the fact in question, let B_{n} be the set of real numbers x_{0} such that all iterations of length n stay in I, i.e. $B_{n}=\left\{x_{0} \in \mathbb{R} \mid T^{k}\left(x_{0}\right) \in I \forall k=0,1, \ldots, n\right\}$. Notice that $B_{n} \subset B_{m}$ when $n>m$. To obtain $B=\bigcap_{n=1}^{\infty} B_{n}$, we need to remove the middle thirds iteratively. As shown above, $B_{1}=I-\left(\frac{1}{3}, \frac{2}{3}\right)$. In the next iteration, the middle third of the interval $\left[0, \frac{1}{3}\right]$ (which is $\left.\left(\frac{1}{9}, \frac{2}{9}\right)\right)$ and the middle of the interval $\left[\frac{2}{3}, 1\right]$ (which is $\left(\frac{7}{9}, \frac{8}{9}\right)$) are removed from B_{1} since they map to $\left(\frac{1}{3}, \frac{2}{3}\right)$ after one iteration. Hence $B_{2}=B_{1}-\left(\frac{1}{9}, \frac{2}{9}\right)-\left(\frac{7}{9}, \frac{8}{9}\right)$. Iteratively, if we encounter any interval J in B_{n}, the middle third of J will be mapped to an interval outside of B_{n} in one iteration and thus will not be contained in B_{n+1}. Hence B will be the Cantor set.

