HW 4.
4.1 A Suppose that F is a discrete dynamical system, i.e a map which we iterate. Suppose that p is a point which has both period 2 and period 3 for F. Prove that F is a fixed point.
4.1. B. Generalize the previous problem by replacing 2,3 by relatively prime integers.
4.2. Consider the shift map on the bi-infinite sequence space of 0 'a and 1 's.
A. List the fixed points of F.
B. List the period 2 orbits which are not fixed points.
C. List the period 3 orbits which are not fixed points. Eg. ... 011.011011011... is one. Alternatively: you can use the notation $\overline{0} 11$.
D. For p a prime, how many distinct period p orbits are there which are not prime?
4.3. Map the one-sided sequence space of 0 's and 1 's to the unit interval by thinking of a sequence as the binary expansion of a number. Thus: $0110000 \ldots$ maps to the number $0 * \frac{1}{2}+1 * \frac{1}{2^{2}}+1 * \frac{1}{2^{3}}$. This map is onto.
A. Prove the map is not one-to-one by exhibiting two distinct sequences that map to the same number.
B. Recall the definition of "continuous" and "connected". Look up or recall a basic theorem about the continuous image of a connected set. Use this theorem to prove abstractlly that the map of part A can have no continuous inverse. (Do not use that the map of A is not one-to-one.)
C. Show that the one-sided shift map on the space of one sided sequences of 0 's and 1 's is semi-conjugate to the doubling map $x \mapsto 2 x$ on the circle \mathbb{R} / \mathbb{Z} of numbers $x \bmod 1$. Hint: take as semi-conjugacy the map from $4.2 \mathrm{~A}, \bmod 1$.
4.4. Look up the definition of "space-filling curve". Using such a curve, prove that we can map the Cantor set onto the closed unit square $0 \leq x \leq 1,0 \leq y \leq 1$ in the place. Generalize your assertion to the unit cube in d-dimensional space.

ON TOPOLOGY, THE CANTOR SET, AND METRIC SPACES
YOU MAY need to consult Appendix 1, and Ch. 9, esp. p 101.
I. From Ch. 7, 80: 1, 2, 3,6; AND: Find the rational whose ternary expansion is a).10000...; b) .02222... Again from p. 80-81: 9-14.
II. Decide whether or not the following subsets of the real line are open, closed, or neither. EXPLAIN WHY, briefly.
a) The set of numbers formed from the sequence $1 / 2,1 / 3,1 / 4, \ldots$..
b) The same set as in a), but with the number 0 included.
c). The rational numbers.
d). The integers
e) The union of the intervals $(0,1),(1,1+1 / 2),(3,3+1 / 3),(4,4+1 / 4), \ldots$
3. Remember that the Cantor set consists of all numbers in the unit interval whose ternary expansion contains ONLY 0's or 2's. For example . $02222 \ldots=1 / 3$ is in ,and $.01212222 \ldots$ is not. Define a map f from the Cantor set to the unit interval by taking all the 2 s , changing them to 1 's then thinking of the new decimal in BINARY. Thus, if $x=(2 / 3)+(0 / 9)+(2 / 27)+(2 / 81)+\ldots$, so that it is the
ternary expansion $.2022 \ldots$, then we map it to $.1011 \ldots$ thought of in binary: $f(x)=$ $(1 / 2)+(0 / 4)+(1 / 8)+(1 / 16)+\ldots$.
a) Show that f is continuous.
b) Contrary to the text, show that f IS NOT one-to-one? HINT: consider points at the edge of deleted intervals, for example $x=1 / 3$ andy $=2 / 3$, or $x=1 / 9$ and $y=2 / 9$ and their images under f.
[It may help to consult the page of LC Young.]

