# Lotka-Volterra Question 

Yusuf Gören

March 11, 2013

Consider the following system of differential equations

$$
\begin{align*}
\dot{x} & =x(1-2 x-y)  \tag{1}\\
\dot{y} & =y(1-x-2 y)
\end{align*}
$$

(i) Work out the equilibrium points of the system (1).
(ii) Classify them and compute their index.
(iii) Draw the phase portrait of (1). Do we get any periodic orbits? Why, or why not?
(iv) A nullcline is a curve on the plane such that either $\dot{x}$ or $\dot{y}$ is 0 (hence the prefix "null"). In general, what is the relationship between nullclines and equilibrium points?
(v) What happens if we change the coefficients of $x$ and $y$ in parenthesis? Work out a few examples; find the nullclines, equilibrium points, their stability, (non-)existence of periodic orbits.

