Problems to help prepare for the 2013, Winter, Chaos (Nonlinear Dynamics) Final

0. [A Maps Problem] Let N be an integer. Consider the map $F(x) = \frac{1}{2}(x + \frac{N}{x})$ a) Find the fixed point of F.

b) Show that this fixed point is attracting. What is its basin of attraction?

c) Take N = 2 and $x_0 = 1$. Write down the first part of the orbit of x_0 : that is x_0, x_1, x_2, x_3 as rational numbers, not decimals. Convert to decimals. Compare to what you know of $\sqrt{2}$.

d) Define what it means for the rate of convergence of an iteration scheme $x_i \mapsto x_{i+1} = F(x_i)$ to converges exponentially (to a desired answer x_*). Define what it means to be super-exponential. Show the rate of our scheme for approximating \sqrt{N} is super-exponential.

1. [An ODE PROBLEM. Type 1] A match-the-picture with the linear algebra, algebraic formulae, and topology type question. [See SCAN IN.]

2. [AN ODE PROBLEM, TYPE 2; piecing together fixed point and linearization analysis]

Follow the example which makes up section 6.4 of Strogatz, regarding the Lotka-Voltera type system. Here is a variant of that example...

Consider the following system of differential equations

(1)
$$\dot{x} = x(1-2x-y)$$

 $\dot{y} = y(1-x-2y)$

(i) Work out the equilibrium points of the system (1).

(ii) Classify them and compute their index.

- (iii) Draw the phase portrait of (1). Do we get any periodic orbits? Why, or why not?
- (iv) A *nullcline* is a curve on the plane such that either \dot{x} or \dot{y} is 0 (hence the prefix "null"). In general, what is the relationship between nullclines and equilibrium points?
- (v) What happens if we change the coefficients of x and y in parenthesis? Work out a few examples; find the nullclines, equilibrium points, their stability, (non-)existence of periodic orbits.

3. [SHIFT MAP]. Consider the point

$p = \dots \overline{01}0101010101000100100100100100100\overline{100}$

- Is p in the stable manifold of $\overline{01} = 010101.0101010...$
- Is p in the unstable manifold of $\overline{01} = 010101.0101010...$
- Is p in the stable manifold of $\overline{100} = ... 1001001.00100100100...?$

Is p in the unstable manifold of $\overline{100} = \dots 1001001.00100100100\dots$?

Is p in the stable manifold of $\overline{0} = \dots 0000.0000 \dots$?

Is p in the unstable manifold of $\overline{0} = \dots 0000.0000 \dots$?

ADDITIONAL PRACTICE PROBLEMS.

4. [ANOTHER MAP Q.] Newton iteration for finding zeros as a dynamical system: SEE: Strogatz problems : 10.1.12, to 10.1.13, and 10.1.14.

The Newton iteration scheme for finding zeros of a differentiable function is depicted below. In it, we make an initial guess for a zero x_0 . Then we define x_1 to be the zero of the Taylor approximate to f(x) at x_1 . Thus $f(x_0)+f'(x_0)(x_1-x_0)=0$ so that $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$. We can think of this as the result of interating a map F(x) = x - f(x)/f'(x).

a) Suppose that f has exactly one zero inside the unit interval 0 < x < 1. Describe conditions on f which will guarantee that the Newton scheme converges to this zero.

b) Describe problems that may arise in the convergence.

c) Give examples in which f has exactly one zero in the unit interval, but such that the Newton iteration scheme does not converge to this zero.

5. [MAPS] Prove or disprove. A continuous invertible map of the real line to itself, viewed as defining a dynamical system, has no periodic orbits besides fixed points.

6. [A LITTLE KNOWLEDGE CAN BE A DANGEROUS THING.] Understand and work with the relation between flows [ODEs] and maps, and more specifically with the relations between the spectrum of their linearizations and the corresponding stability relations. In a nutshell: the exponential relates linear ODEs to linear maps. Corresponding eigenvalues are related by $\lambda \to e^{\lambda}$.

Example: The time 1 map for the ODE dx/dt = kx is the map takes an initial condition $x \mapsto e^k x$. If k > 0 then $e^k > 1$ and the map is unstable. If k, 0 then $e^k < 1$ and 0 is a stable fixed point for the map. What about the time 3 flow?

The above example carries over to n-dimensional linear systems: the time t map for the linear system $\frac{d}{dt}\vec{v} = A\vec{v}$ is the map $\vec{v} \to e^{tA}\vec{v}$. Write $\sigma(A)$ for the spectrum of the matrix A: the list of its eigenvalues. Then $\sigma(e^{tA}) = e^{t\sigma(A)}$, meaning that the eigenvalues of e^{tA} are precisely the numbers $e^{t\lambda}$ as λ varies over the eigenvalues of A.

Example: $A = \begin{pmatrix} 0 & -\omega \\ \omega & 0 \end{pmatrix}$ One computes that $e^{tA} = \begin{pmatrix} \cos(\omega t) & -\sin(\omega t) \\ \sin(\omega t) & \cos(\omega t) \end{pmatrix}$ The spectrum of A is $\pm i\omega$. The spectrum of e^{tA} is $e^{\pm i\omega t}$ corresponding to the rotating solutions.

If f is a vector field on a 3 dimensional space and f(p) = 0, what is Df(p)? How do you determine the stability of p from the matrix Df(p)? If $F : \mathbb{R}^3 \to \mathbb{R}^3$ is a map with a fixed point p, what is DF(p)? How do you determine the stability of p from the matrix DF(p)? Etc. Etc.

 $\mathbf{2}$