1. HW for the week of Feb 19-21; due Feb 26

Exercise 1. The harmonic oscillator is the system $\ddot{x} = -\omega^2 x$ with $\omega \neq 0$ a constant called the frequency. Verify that $H = \frac{1}{2}\dot{x}^2 + \frac{\omega^2}{2}x^2$ is constant along solutions by

a) plugging the general solution into H and differentiating.

b) differentiating H along the corresponding 1st orderized system.

c) Draw the phase portrait of the flow in the (x, \dot{x}) plane, indicating several solutions and the fixed point.

Exercise 2. Repeat Exer. 1 (b) above for the general 'conservative force' 1 degree of freedom system: $\ddot{x} = -V'(x)$, the prime denoting d/dx. That is: prove that the energy $H = \frac{1}{2}\dot{x}^2 + V(x) = (kinetic) + (potential)$. is constant.

b) Relate the critical points of the potential V to the critical points (zeros) of the corresponding vector field in the (x, \dot{x}) plane.

c). Draw the phase portrait for the 'Mexican hat' potential $V(x) = (1 - x^2)^2$ making sure to indicate the fixed points and the homoclinic orbits.

Exercise 3. (a) Draw the phase portrait for the pendulum $\hat{\theta} = -\sin(\theta)$ by finding the potential $V(\theta)$ and hence the energy. Here θ is the angle that the pendulum bob makes with the vertical. Take θ to be an angle: so view it mod 2π .

(b) Is $\theta = 0$ straight up, or straight down? What is the meaning of the homoclinic orbit?

Exercise 4. Add some damping to the previous exercise: consider the damped pendulum $\ddot{\theta} = -\sin(\theta) - \mu \dot{\theta}$, μ small, positive.

a) Draw the phase portrait.

b) What happened to the critical points of the previous exercise? How did their linearization change? What happened to the homoclinic orbit?

Exercise 5. Add forcing to the pendulum of the previous exercise: consider the damped driven pendulum is the $\ddot{\theta} = -\sin(\theta) - \mu\dot{\theta} + \epsilon f(t)$ Here f(t) is a periodic function of time called the forcing function, for example $f(t) = \cos(\omega t)$. This is now a non-autonomous system since time explicitly occurs on the r.h.s of the differential equation.

a) turn the system into an autonomous vector field in 3 dimensions by the following trick. Introduce a variable τ to play the role of t. (Set $v = \dot{\theta}$ as per usual.) Write out the expression G explicitly:

$$\begin{split} \dot{\tau} &= 1\\ \dot{\theta} &= v\\ \dot{v} &= G(\theta, y, \tau) = ? \end{split}$$

Exercise 6. Do the n-dimensional version of exer. 2 above: for $\vec{x} \in \mathbb{R}^n, V : \mathbb{R}^n \to \mathbb{R}$ smooth, consider the 2nd order ODE [Newton's eq.]: $\ddot{\vec{x}} = -\nabla V(\vec{x})$. Define the associated energy H. Show your H is constant along solutions.

Exercise 7 (Gradient flows). Again: $x \in \mathbb{R}^n, V : \mathbb{R}^n \to \mathbb{R}$ smooth. But now look at the 1st order gradient system: $\dot{\vec{x}} = -\nabla V(\vec{x})$ Prove that if $\vec{x}(t)$ is a solution then $V(\vec{x}(t))$ is strictly monotonically decreasing, unless $\vec{x}(t)$ is constant.