1. HW for the week of Feb 19-21; due Feb 26

Exercise 1. The harmonic oscillator is the system $\ddot{x}=-\omega^{2} x$ with $\omega \neq 0$ a constant called the frequency. Verify that $H=\frac{1}{2} \dot{x}^{2}+\frac{\omega^{2}}{2} x^{2}$ is constant along solutions by
a) plugging the general solution $\left(x(t)=a \cos \left(\omega t-\phi_{0}\right)\right.$ with a, ϕ_{0} constants) into H and verifying using trig identities that the result is independent of t.
b) B differentiating H along the corresponding 1 st orderized system, using the chain rule.
c) Draw the phase portrait of the flow in the (x, \dot{x}) plane, indicating several solutions and the fixed point.
Exercise 2. Repeat Exer. 1 (b) above for the general 'conservative force' 1 degree of freedom system: $\ddot{x}=-V^{\prime}(x)$, the prime denoting $d / d x$. That is: prove that the energy $H=\frac{1}{2} \dot{x}^{2}+V(x)=($ kinetic $)+($ potential $)$. is constant.
b) Relate the critical points of the potential V to the critical points (zeros) of the corresponding vector field in the (x, \dot{x}) plane.
c). Draw the phase portrait for the 'Mexican hat ' potential $V(x)=\left(1-x^{2}\right)^{2}$ making sure to indicate the fixed points and the homoclinic orbits.

Exercise 3. (a) Draw the phase portrait in the (θ, v)-plane, $(v=\dot{\theta})$ for the pendulum $\ddot{\theta}=-\sin (\theta)$. Do so with the help of the energy $H(\theta, v)=\frac{1}{2} v^{2}+V(\theta)$ which will require you to find the potential energy $V(\theta)$. [θ is the angle that the pendulum bob makes with the vertical. I
(b) Find the two critical points of the resulting vector field $\left(f_{1}(x, v), f_{2}(x, v)\right)$ of $\frac{d}{d t}(\theta, v)=\left(f_{1}(x, v), f_{2}(x, v)\right)$. What is the linearized vector field at the fixed points? (The answer will be a 2 by 2 matrix associated to each fixed point.) What are the associated eigenvalues? Which fixed point is stable ? Which is unstable? Draw a 'physical picture' of the pendulum with an arrow 'Down' for gravity, and the angle θ indicated in your picture. Indicate the two fixed points in your picture (One corresponds to $\theta=0$.) Indicate the homoclinic orbit on your phase portrait from part (a), and describe it in words, based on your physical picture.
(c)[EXTRA CREDIT] FINDING THE HOMOCLINIC: If $P_{u}=\left(x_{u}, v_{u}\right)$ is the unstable fixed point, solve the equation $H(x, v)=H\left(P_{u}\right)$ to get a differential expression of the form $f(\theta) d \theta=d t$ where $f(\theta)$ is free of square roots. Integrate the expression. Invert it to get an explicit formula $\theta=\theta(t)$ which desribes the homoclinic orbit (with $v(t)=d \theta / d t)$.

Exercise 4. Add damping. Consider the damped pendulum $\ddot{\theta}=-\sin (\theta)-\mu \dot{\theta}, \mu$ small, positive.
a) Draw the phase portrait.
b) Verify that the critical points of the previous exercise did not move. Their linearizations do change. How? (Write down 2 by 2 matrices with μ 's somewhere in them.) How does the stability change? What happened to the homoclinic orbit?
Exercise 5. Now add forcing: consider the damped driven pendulum is the $\ddot{\theta}=$ $-\sin (\theta)-\mu \dot{\theta}+\epsilon f(t)$ Here $f(t)$ is a periodic function of time called the forcing function, for example $f(t)=\cos (\omega t)$. This is now a non-autonomous system since time explicitly occurs on the r.h.s of the differential equation.
a) turn the system into an autonomous vector field in 3 dimensions by the following trick. Introduce a variable τ to play the role of t. (Set $v=\dot{\theta}$ as per usual.)

Write out the expression G explicitly:

$$
\begin{gathered}
\dot{\tau}=1 \\
\dot{\theta}=v \\
\dot{v}=G(\theta, y, \tau)=?
\end{gathered}
$$

Exercise 6 (EXTRA CREDIT). Do the n-dimensional version of exer. 2 above: for $\vec{x} \in \mathbb{R}^{n}, V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ smooth, consider the 2nd order ODE [Newton's eq.]: $\ddot{\vec{x}}=-\nabla V(\vec{x})$. Define the associated energy H. Show your H is constant along solutions.

Exercise 7 (EXTRA CREDIT: Gradient flows). Again: $x \in \mathbb{R}^{n}, V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ smooth. But now look at the 1 st order gradient system: $\dot{\vec{x}}=-\nabla V(\vec{x})$ Prove that if $\vec{x}(t)$ is a solution then $V(\vec{x}(t))$ is strictly monotonically decreasing, unless $\vec{x}(t)$ is constant.

