1. HW for the week of Feb 19-21; due Feb 26

Exercise 1. The harmonic oscillator is the system $\ddot{x} = -\omega^2 x$ with $\omega \neq 0$ a constant called the frequency. Verify that $H = \frac{1}{2}\dot{x}^2 + \frac{\omega^2}{2}x^2$ is constant along solutions by

a) plugging the general solution $(x(t) = a \cos(\omega t - \phi_0) \text{ with } a, \phi_0 \text{ constants})$ into H and verifying using trig identities that the result is independent of t.

b) B differentiating H along the corresponding 1st orderized system, using the chain rule.

c) Draw the phase portrait of the flow in the (x, \dot{x}) plane, indicating several solutions and the fixed point.

Exercise 2. Repeat Exer. 1 (b) above for the general 'conservative force' 1 degree of freedom system: $\ddot{x} = -V'(x)$, the prime denoting d/dx. That is: prove that the energy $H = \frac{1}{2}\dot{x}^2 + V(x) = (kinetic) + (potential)$. is constant.

b) Relate the critical points of the potential V to the critical points (zeros) of the corresponding vector field in the (x, \dot{x}) plane.

c). Draw the phase portrait for the 'Mexican hat' potential $V(x) = (1 - x^2)^2$ making sure to indicate the fixed points and the homoclinic orbits.

Exercise 3. (a) Draw the phase portrait in the (θ, v) -plane, $(v = \dot{\theta})$ for the pendulum $\ddot{\theta} = -\sin(\theta)$. Do so with the help of the energy $H(\theta, v) = \frac{1}{2}v^2 + V(\theta)$ which will require you to find the potential energy $V(\theta)$. [θ is the angle that the pendulum bob makes with the vertical.]

(b) Find the two critical points of the resulting vector field $(f_1(x,v), f_2(x,v))$ of $\frac{d}{dt}(\theta, v) = (f_1(x, v), f_2(x, v))$. What is the linearized vector field at the fixed points? (The answer will be a 2 by 2 matrix associated to each fixed point.) What are the associated eigenvalues? Which fixed point is stable? Which is unstable? Draw a 'physical picture' of the pendulum with an arrow 'Down' for gravity, and the angle θ indicated in your picture. Indicate the two fixed points in your picture (One corresponds to $\theta = 0$.) Indicate the homoclinic orbit on your phase portrait from part (a), and describe it in words, based on your physical picture.

(c)[EXTRA CREDIT] FINDING THE HOMOCLINIC: If $P_u = (x_u, v_u)$ is the unstable fixed point, solve the equation $H(x, v) = H(P_u)$ to get a differential expression of the form $f(\theta)d\theta = dt$ where $f(\theta)$ is free of square roots. Integrate the expression. Invert it to get an explicit formula $\theta = \theta(t)$ which desribes the homoclinic orbit (with $v(t) = d\theta/dt$).

Exercise 4. Add damping. Consider the damped pendulum $\ddot{\theta} = -\sin(\theta) - \mu \dot{\theta}$, μ small, positive.

a) Draw the phase portrait.

b) Verify that the critical points of the previous exercise did not move. Their linearizations do change. How? (Write down 2 by 2 matrices with μ 's somewhere in them.) How does the stability change? What happened to the homoclinic orbit?

Exercise 5. Now add forcing: consider the damped driven pendulum is the $\hat{\theta} = -\sin(\theta) - \mu \dot{\theta} + \epsilon f(t)$ Here f(t) is a periodic function of time called the forcing function, for example $f(t) = \cos(\omega t)$. This is now a non-autonomous system since time explicitly occurs on the r.h.s of the differential equation.

a) turn the system into an autonomous vector field in 3 dimensions by the following trick. Introduce a variable τ to play the role of t. (Set $v = \dot{\theta}$ as per usual.) Write out the expression G explicitly:

$$\begin{aligned} \dot{\tau} &= 1\\ \dot{\theta} &= v\\ \dot{v} &= G(\theta, y, \tau) = ? \end{aligned}$$

Exercise 6 (EXTRA CREDIT). Do the n-dimensional version of exer. 2 above: for $\vec{x} \in \mathbb{R}^n, V : \mathbb{R}^n \to \mathbb{R}$ smooth, consider the 2nd order ODE [Newton's eq.]: $\ddot{\vec{x}} = -\nabla V(\vec{x})$. Define the associated energy H. Show your H is constant along solutions.

Exercise 7 (EXTRA CREDIT: Gradient flows). Again: $x \in \mathbb{R}^n, V : \mathbb{R}^n \to \mathbb{R}$ smooth. But now look at the 1st order gradient system: $\dot{\vec{x}} = -\nabla V(\vec{x})$ Prove that if $\vec{x}(t)$ is a solution then $V(\vec{x}(t))$ is strictly monotonically decreasing, unless $\vec{x}(t)$ is constant.