5.1. Design an affine differential equation having a saddle point at $(1,1)$ with the line $x-1=2(y-1)$ as stable manifold and the line $x=1$ as unstable manifold. Draw some phase portraits. (Affine means linear plus constant.)
5.2. The damped harmonic oscillator is given by

$$
\ddot{x}=-\omega^{2} x-\mu \dot{x} .
$$

where ω and μ are real parameters known as the frequency and the damping. (or friction) coefficient. (i) Reexpress the oscillator as a system in the (x, \dot{x}) plane by putting it in 1st order form.
(ii) Find the eigenvalues of the corresponding two-by-two matrix.
(iii) Write out the general solution.
(iv) Draw several phase portraits according to several choices of (ω, μ). Include $(\omega, \mu)=(1,0)$.
5.3. Strogatz writes a limit cycle in polar coordinates r, θ as $\dot{\theta}=1, \dot{r}=r\left(1-r^{2}\right)$. (Look up 'limit cycle' in his index.) Convert this equation to a system of 1 st order differential equation in the Cartesian $x y$ plane. (The correct answer will have a polynomials in x, y as r.h.s.)

