HW 4

4.1. Recall the tent map $x \mapsto T_{m}(x)$. As m increases from 0 to 1 the tent gets steeper up until the point where it just starts to 'poke' through the roof $y=1$ at the value $m=2$. Let T be the tent map at this special value $m=2$.
A. Graph a few iterates of T.
B. Show that T^{k} has 2^{k} periodic orbits of period k and that all of these orbits are unstable.
4.2. Consider the shift map on the bi-infinite sequence space of 0 'a and 1 's.
A. List the fixed points of F.
B. List the period 2 orbits which are not fixed points.
C. List the period 3 orbits which are not fixed points. Eg. ...011.011011011... is one. Alternatively: you can use the notation $\overline{0} 11$.
D. For p a prime, how many distinct period p orbits are there which are not prime?
4.3. Map the one-sided sequence space of 0 's and 1 's to the unit interval by thinking of a sequence as the binary expansion of a number. Thus: 0110000... maps to the number $0 * \frac{1}{2}+1 * \frac{1}{2^{2}}+1 * \frac{1}{2^{3}}$. This map is onto.
A. Prove the map is not one-to-one by exhibiting two distinct sequences that map to the same number.
B. Recall the definition of "continuous" and "connected". Look up or recall a basic theorem about the continuous image of a connected set. Use this theorem to prove abstractlly that the map of part A can have no continuous inverse. (Do not use that the map of A is not one-to-one.)
C. Show that the one-sided shift map on the space of one sided sequences of 0 's and 1 's is semi-conjugate to the doubling map $x \mapsto 2 x$ on the circle \mathbb{R} / \mathbb{Z} of numbers $x \bmod 1$. Hint: take as semi-conjugacy the map from $4.2 \mathrm{~A}, \bmod 1$.
4.4. Look up the definition of "space-filling curve". Using such a curve, prove that we can map the Cantor set onto the closed unit square $0 \leq x \leq 1,0 \leq y \leq 1$ in the place. Generalize your assertion to the unit cube in d-dimensional space.

HW 5.
5.1 Let $x \mapsto f(x)$ be a smooth strictly monotone increasing map of the interval $I=[0,1]$ onto itself. Suppose also that whenever $f(x)=x$ for $x \in I$ we have $\frac{d f}{d x}(x) \neq 1$.
A. Show that the fixed points of f in the unit interval are alternating stable and unstable. Sketch the phase portrait of such an f.
B. Prove f has only a finite number of fixed points in the unit interval.
5.2 A Suppose that F is a discrete dynamical system, i.e a map which we iterate. Suppose that p is a point which has both period 2 and period 3 for F. Prove that F is a fixed point.
B. Generalize the previous problem by replacing $(2,3)$ by a general relatively prime pair of integers (m, n).
5.3. Construct a semi-conjugacy from the doubling map $x \mapsto 2 x \bmod 1$ to the tent map at the special value $m=2$. (See HW4.1.) Hint: your semi-conjugacy to the unit interval will be a $2: 1$ at all but a few points.

