HW 1. [Tent Map and Cantor set. D is weighted more heavily than A-C.]
Recall that the tent map : a continuous, piecewise linear map on the real line which has zeros at 0 and 1 , and a maximum at $x=1 / 2$, where its graph has a 'corner'. Write m for the slope of the tent map at $x=0$. Then its slope at $x=1$ is $-m$. Assume throughout $m>0$. Write $T_{m}(x)$ for this tent map.
A) Write out a formula for the tent map $T_{m}(x)$. You will need to divide the formula into two cases, $x \leq 1 / 2$ and $x \geq 1 / 2$.
B) Prove: if $0<m<1$ then $x=0$ is an attracting fixed point and the entire real line is its basin of attraction: that is: for all x we have $T^{\circ n}(x) \rightarrow 0$ as $n \rightarrow \infty$.
C). Prove: If $m>1$ and x is outside the unit interval then the orbit of x tends to $-\infty$.
$\left.{ }^{*}\right)$ D. Write B for the set of all x whose orbit is bounded. Prove that when $m=$ 3 that B is precisely the standard Cantor set, obtained by successively removing middle thirds from intervals.

HW 2. [Conjugacy.] Two maps F, G of the real line to itself are conjugate if there is an invertible map ϕ such that $F \circ \phi=\phi \circ G$. Conjugate maps have the same dynamical behaviour. A quadratic map is one of the form $A x^{2}+B x+C$, A, B, C constants.
A. Show that any quadratic map with $A>0$ is conjugate to a quadratic map of the form $x^{2}+c, c$ a constant by looking for a conjugating map which is linear; $\phi(x)=a x+b$.
B. Show that any quadratic map is conjugate to a logistic map $k x(1-x)$ where again the conjugating map ϕ can be taken linear.
C. By A, we have that $k x(1-x)$ is conjugate to $x^{2}+c$ provided $k<0$. Find c as a function of k when the conjugation is implemented.

HW 3. [Quadratic family.] The quadratic family is the family of maps $Q_{c}(x)=$ $x^{2}+c$. Recall that $\mathbb{R} \cup\{\infty\}=S^{1}$ via stereographic projection (Math 128) so that we can think of ∞ as a real point. By continuity, we set $Q_{c}(\infty)=\infty$.
A. When $c=0$, find the basin of attraction of the fixed point $x=0$.
B. Show that ∞ is an attracting fixed point for all values of c,
C. Show that for c sufficiently large enough, ∞ is the only fixed point and that its basin of attraction of ∞ is the entire extended real line.
D. Find the set of parameter values c such that Q_{c} has exactly two fixed points besides $x=\infty$ and find these fixed points $p_{-}(c), p_{+}(c)$ (with $p_{-}(c)<p_{+}(c)$).

For the remaining problems, c is in the parameter range of problem D , and $I(c)=\left[p_{-}(c), p_{+}(c)\right]$.
E. Show that Q_{c} maps $I(c)$ onto an interval either equal to, or containing $I(c)$.
H. Show that for c sufficiently negative there exist points $x \in I(c)$ mapped outside of $I(c)$ by Q_{c} and show that the set of such points form an interval $J(c)$ strictly inside $I(c)$.
J. Show that there is a nonempty range of parameters such that $J(c) \neq \emptyset$ and that $\left|Q_{c}^{\prime}(x)\right|>1$ for $x \in I(c) \backslash J(c)$.
$\left.{ }^{*}\right) \mathrm{K}$. Show that for c in the range of problem J , the set of points x whose orbits are bounded forms a subset of $I(c)$ which is homeomorphic to the Cantor set. Use: any set which is compact, totally disconnected and perfect.

