Nurowski twistors

Gil Bor, CIMAT

sept 2013

This is a report of my attempts to verify some facts that appear in the Nurowski-An paper on twistor space for rolling and what Pawel N. told me:

1. For each pseudo-riemanian oriented 4-manifold M of signature $(2,2)$ Nurowski-An define $\mathbb{T} M$ as the set seld-dual null 2-planes in $T M$. It is a 5 -manifold, in fact a bundle of real projective lines $p: \mathbb{T} M \rightarrow M$.
2. A rank-2 distribution \mathcal{D} is defined on $\mathbb{T} M$ as follows: a point $\tilde{x} \in \mathbb{T} M$ stands for a null 2-plane $N_{x} \subset T_{x} M$ where $x=p(\tilde{x})$. Then $\mathcal{D}_{\tilde{x}} \subset T_{\tilde{x}} \mathbb{T} M$ is the horizontal lift of N_{x} wrt the Levi-Civita connection.
3. Some things to check:

- \mathcal{D} is integrable iff M is SD (or ASD, I forget)
[Well, not exactly true, there might be some isolated points on the twistor fiber, max 4 , where the distribution is integrable, ie fails to be bracket generating].
- When M is the product of two surfaces with the diffrence metric, \mathcal{D} is just the rolling distribution.
- When \mathcal{D} is not integrable it is automaticaly $(2,3,5)$.
- \mathcal{D} dependes only on the conformal class of the metric on M.

Main question:

- Find examples of irreducible M such that \mathcal{D} is "flat" $\left(G_{2}\right.$-symmetry).
(Irreducible means not a product of surfaces with the difference metric).

4. Norowski-An have a recent additional paper where they propose looking at "Plebanski second heavenly metric", some class of metrics depending on an arbitrary function Θ of 4 variables, which appears somewhere in general realtivity, giving metrics which are SD and Ricci flat (I dont undersand the physical or geometrical motivation for introducing them); the flatness condition on \mathcal{D}, plus some simplifying assumptions on Θ, translate to a very complicated 8th order ODE for Θ, giving apparently many local solutions. The resulting metrics on M are irreducible (scalar flat reducible means the 2 surfaces are constant curvature, of same curvature).
5. Nurowski told me on the phone that Dennis The (now in Australia) gave a recent talk where he comes up with some class of homogeneous irreducible 2,2 metrics with flat twistor distribution. He uses a phenomenon in parabolic geometries called "symmetry gap", meaning in our case, that if a ($2,3,5$) distribution has "submaximal" symmetry group (or rather algebra, its all local) than the maximal dimension of the symmetry is 6 (if I am not mistaken). So its enough to present a 2,2 metric which is not SD , with 7 linearly independent conformal Killing fields.
6. Some linear algebra with signature $(2,2)$. Take \mathbb{R}^{4} as the set of 2×2 matrices (linear transformations $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$)

$$
X=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)
$$

The quadratic form $X \mapsto \operatorname{det}(X)=x_{1} x_{4}-x_{2} x_{3}$ is of signature $(2,2)$.
Note: Nurowski-An take the quadratic form $x_{1} x_{2}-x_{3} x_{4}$, so their formulas look a little different.
7. The group $\tilde{G}=\mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$ acts by

$$
\left(g_{+}, g_{-}\right) \cdot X=g_{+} X g_{-}^{-1}
$$

with ineffective kernel $\pm(I, I)$. Then $G=\mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R}) /\{ \pm(I, I)\} \cong$ $\mathrm{SO}_{2,2} \subset G L_{4}(\mathbb{R})$, the group of orientation preserving isometries of \mathbb{R}^{4} (with respect to the quadratic form $\operatorname{det}(X)$). Let \mathfrak{g} be the Lie algebra of G. Then $\mathfrak{g} \cong \mathfrak{s l}_{2}(\mathbb{R}) \oplus \mathfrak{s l}_{2}(\mathbb{R})$.
8. To each 2-plane in \mathbb{R}^{4} correponds a line in $\Lambda^{2}\left(\mathbb{R}^{2}\right)$ (wedge the elemnts of a basis of this plane). A plane is said to be SD (self-dual) if the cooreponding line in $\Lambda^{2}\left(\mathbb{R}^{2}\right)$ is SD wrt the Hodge operator and the standard orientation. It turns out that each null plane is either SD or ASD.
9. A null vector in \mathbb{R}^{4} is a matrix X such that $\operatorname{det}(X)=0$, hence of rank 1, i.e. with 1-dim kernel $L_{-} \subset \mathbb{R}^{2}$, or equivalently, a 1-dim image $L_{+} \subset \mathbb{R}^{2}$. A null 2-plane is given by either the set of X with a common kernel L_{-}or a common image L_{+}. The former is an ASD plane and the later is SD (checked, tedious, ommited).
10. Let $N_{0}=\left\{x_{3}=x_{4}=0\right\}$ (the set of matrices with common image $L_{0}=\mathbb{R}(1,0)$ (the x-axis). More generaly, let $N_{t}=\left\{X \in \mathbb{R}^{4} \mid \mathbb{R}(1, t)^{t}=\right.$ $\operatorname{Im}(X)\}$, and $N_{\infty}=\left\{X \in \mathbb{R}^{4} \mid \mathbb{R}(0,1)=\operatorname{Im}(X)\right\}$. Thus

$$
N_{t}=\left\{X \mid x_{3}-t x_{3}=x_{4}-t x_{2}=0\right\}, \quad t \in \mathbb{R} .
$$

Let \mathbb{T} be the space of SD null 2-planes in \mathbb{R}^{4}. From the description above of null planes, $\mathbb{T}=\left\{N_{t} \mid t \in \mathbb{R} \cup\{\infty\}\right\}=\mathbb{R} P^{1}$ (the set of 1-dim $\left.L_{+} \subset \mathbb{R}^{2}\right)$.
11. G acts transitively on \mathbb{T}. The stabilizer of N_{0} is $H:=U \times \mathrm{SL}_{2}(\mathbb{R}) /\{ \pm(I, I)\}$, where $U \subset \mathrm{SL}_{2}(\mathbb{R})$ is the set of upper triangular 2×2 matrices of determinant 1 (stabilizer of L_{0}). Hence $\mathfrak{h}=\mathfrak{u} \oplus \mathfrak{s l}_{2}(\mathbb{R})$, where \mathfrak{u} is the set of upper triangular matrices of trace 0 .
The action of G on $G / H=\mathbb{T}=\mathbb{R} P^{1}$ factors through the standard action of $P \mathrm{SL}_{2}(\mathbb{R})$ on $\mathbb{R} P^{1}$ by Mobious transformations, $t \mapsto \frac{a t+b}{c t+d}$.
12. We have the following picture: the set of null vectors in \mathbb{R}^{4} define the null quadric, a quadratic surface $Q \subset \mathbb{R} P^{3}$, given in homogeneous coordinates by $x_{1} x_{4}-x_{2} x_{3}=0$, or in affine coordinates, $x=x_{1} / x_{4}, y=$ $x_{2} / x_{4}, z=x_{3} / x_{4}$, by the graph of the function $z=x y$ (it looks like a saddle point at the origin; the level curves are hyperbolas $y=$ const $/ x$). The null planes define on Q a double rulling, so that through each point of the quadric pass exactly two lines, one SD and one ASD. In the affine coordinates x, y, z, the lines on $z=x y$ through the point $\left(x_{0}, y_{0}, x_{0} y_{0}\right)$ are $z=x_{0} y$ and $z=x y_{0}$. The group G acts on Q, preserving both rullings.
13. Here is a representation theoretic description. Let $S=\mathbb{R}^{2}$ be the standard 2-dimesional real representation of $\mathrm{SL}_{2}(\mathbb{R})$. Note that it is self-dual, ie $S \cong S^{*}$, via the invariant area form $\omega=d x \wedge d y$ on S, $v=(a, b) \mapsto \iota_{v} \omega=a d y-b d x$. The group $G=S L_{2}(\mathbb{R}) \times S L_{2}(\mathbb{R})$ has 2 basic representations on \mathbb{R}^{2}, denoted by S_{+}, S_{-}(the left factor acts non-trivialy on S_{+}, the right factor on $\left.S_{-}\right)$. Let $\omega_{ \pm} \in \Lambda^{2}\left(S_{ \pm}^{*}\right)$ be the invariant area forms on $S_{ \pm}$.

Next $\mathbb{R}^{4}=\operatorname{Mat}_{2 \times 2}(\mathbb{R})=\operatorname{Hom}\left(S_{+}, S_{-}\right)=S_{+} \otimes S_{-}^{*}=S_{+} \otimes S_{-}$(that's quite long, sorry), equiped with the 2 -form $\omega_{+} \otimes \omega_{-}$, which is G invariant, symmetric, and of signature (2,2). The set of decomposable vectors $v_{+} \otimes v_{-}$is G-invariant and obiously null. A SD plane has the form $v_{+} \otimes S_{-}$, and an ASD is $S_{+} \otimes v_{-}$. Thus we see that the set of SD null 2-planes correpsonds to $P\left(S_{+}\right) \cong \mathbb{R} P^{1}$.
[Can go on, find the Hodge star operator. ..]
14. Now let M be an oriented manifold with a metric of signature (2,2). For $x \in M$, an oriented orthonormal coframe in $T_{x} M$ is a linear orientation preserving isometry $u: T_{x} M \rightarrow \mathbb{R}^{4}$. The set of such coframes is a principal G bundle $p: B \rightarrow M$.
15. Let $\mathbb{T} M \rightarrow M$ be the bundle of self dual null planes on M. That is

$$
\mathbb{T} M=\left\{u^{-1} N_{0} \mid u \in B\right\} .
$$

Then $\mathbb{T} M$ is a 5 -dimensional manifold, a bundle of real projective lines over M.

Note that $\mathbb{T} M$ can be identified with $B / H, u^{-1} N_{0} \mapsto u H$.
Another description of $\mathbb{T} M$: it is the projectivization of the 2-plane bundle $\mathbb{S}_{+} \rightarrow M$, associated to the standard representaion of left factor of $\tilde{G}=\mathrm{SL}_{2} \times \mathrm{SL}_{2}$. (The bundle \mathbb{S}_{+}may not exist globaly, but its projectivization does exist).
16. A rank 2 distribution \mathcal{D} is defined on $\mathbb{T} M$ by parallel translation of SD null 2-planes along null directions. Given a point $\tilde{x} \in \mathbb{T} M$ it stands por a SD null 2-plane $N_{x} \subset T_{x} M$, where $x=p(\tilde{x})$. Then $\mathcal{D}(\tilde{x})$ is the horizontal lift (wrt the Levi Civita connection of M) of N_{x} to $T_{\tilde{x}} \mathbb{T} M$.
17. Let us see why \mathcal{D} depends only on the conformal class of the metric on M and the orientation.

First note that the definition of null vectors and SD null 2-plane (ie $\mathbb{T} M$ itself) depend only on the conformal structure and the orientation.

Next, it is a standard fact that null geodesics on a pseudo riemannian manifold depend only on the conformal structure (a conformal change of the metric will result only in a reparametrization of null geodesics; *** add an argument or reference***). Also, as we saw before, any null vector is contained in a unique SD null 2-plane.
It follows that given any null geodesic $x(s)$ in M, there is a unique 1 parameter family of SD null 2-planes N_{s} along $x(s)$ (i.e. $N_{s} \subset T_{x(s)} M$) such that $\dot{x}(s) \in N_{s}$. Furthermore, since parallel transport is an isometry, the assignement $s \mapsto N_{s}$ is parallel along $x(s)$ and is unaltered by a conformal change of the metric.
Now take a point $\tilde{x} \in \mathbb{T} M$, and $N_{x} \subset T_{x} M, x=p(\tilde{x})$, the corresponding null 2-plane. A vector $v \in \mathcal{D}(\tilde{x})$ iff $v=\dot{\tilde{x}}(0)$, where $\tilde{x}(s)$ is a curve in $\mathbb{T} M$ such that $\tilde{x}(0)=\tilde{x}, x(s)=p(\tilde{x}(s))$ is a curve in M so that $p_{*} v=\dot{x}(0) \in N_{x}$, and the family of null 2-planes N_{s} corresponding to $\tilde{x}(s)$ is parallel transported along $x(s)$. Since $\dot{x}=p_{*} v$ is null, we can take wlog $x(s)$ to be a null geodesic, hence $\tilde{x}(s)$ is unaltered by a conformal change of the metric, and the same is true for $v=\dot{\tilde{x}}(0)$.
18. Let ω be the soldering form on B. It is an \mathbb{R}^{4} valued 1-form with the (defining) property

$$
\omega(u)=p^{*} u .
$$

Let θ be the Levi-Civita connection form. It is a $\mathfrak{g} \subset \mathfrak{g l}_{4}(\mathbb{R})$ valued G-equivariant 1-form on B with the (defining) property

$$
d \omega=-\theta \wedge \omega
$$

(The wedge product on the right means we are multiplying a 4×4 matrix of 1 -forms by a column vector of 1 -forms).
19. A better way to write the last equation is to use $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{R}) \oplus \mathfrak{s l}_{2}(\mathbb{R})$, so that $\theta=\left(\theta^{+}, \theta^{-}\right)$, where $\theta^{ \pm}$are $\mathfrak{s l}_{2}(\mathbb{R})$-valued 1-forms on B (a traceless
2×2 matrix of 1-forms), and ω, $d \omega$ are $\mathfrak{g l}_{2}(\mathbb{R})$-valued 1- and 2-forms (resp.) on B. So the last equation becomes

$$
d \omega=-\theta^{+} \wedge \omega-\omega \wedge \theta^{-}
$$

where on the right we have the wedging of 2×2 matrices of 1 -forms. The forms ω, θ together determine a conframing of B.
20. Consider the projection $\pi: \mathfrak{g} \rightarrow \mathfrak{g} / \mathfrak{h}$. Then $\pi \theta$ is a $\mathfrak{g} / \mathfrak{h}$-valued H equivariant 1-form on B, hence descends to a 1 -form $\theta_{\mathbb{T}}$ on $\mathbb{T} M=$ B / H with values in the vertical bundle $V=B \times_{H} \mathfrak{g} / \mathfrak{h}$ (kernel of the derivative of the projection $\mathbb{T} M \rightarrow M)$. The kernel of $\theta_{\mathbb{T}}$ is the horizontal distribution on $\mathbb{T} M$ induced by the Levi-Civita connection of M.
21. In terms of our model $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{R}) \oplus \mathfrak{s l}_{2}(\mathbb{R}), \mathfrak{h}=\mathfrak{u} \oplus \mathfrak{s l}_{2}(\mathbb{R}), \theta=\left(\theta^{+}, \theta^{-}\right)$, we can take

$$
\theta_{\mathbb{T}}=\theta_{21}^{+} .
$$

The H-action is given by

$$
R_{h}^{*} \theta_{\mathbb{T}}=\operatorname{Ad}\left(h^{-1}\right) \theta_{\mathbb{T}}=a^{-2} \theta_{\mathbb{T}},
$$

where

$$
h=\left(u, g^{-}\right), \quad u=\left(\begin{array}{ll}
a & b \\
0 & a^{-1}
\end{array}\right) .
$$

22. A moving coframe on M is a (local) section of $M \rightarrow B$. Then $u=$ $\left(\omega_{1}, \ldots, \omega_{4}\right)$, where the $\omega_{i}=u^{*} x_{i}$ form a basis of 1 -forms such that

$$
\langle v, v\rangle=\omega_{1}(v) \omega_{4}(v)-\omega_{2}(v) \omega_{3}(v), \quad v \in T M .
$$

For each $x \in M$ and $t \in \mathbb{R} \cap \infty, u(x)^{-1} N_{t} \subset T_{x} M$ is a SD null 2-plane, ie an element of $p^{-1}(x) \subset \mathbb{T} M$, given by the common kernels of the two 1 -forms

$$
\omega_{1}-t \omega_{3}, \quad \omega_{2}-t \omega_{4} .
$$

23. Pull back the ω_{i} 's to $\mathbb{T} M$. Then a coframing of $\mathbb{T} M$ is given by

$$
\omega_{1}, \ldots, \omega_{4}, \theta_{\mathbb{T}}
$$

and the distribution \mathcal{D} on $\mathbb{T} M$ is given by the common kernels of the three 1 -forms

$$
\alpha_{1}=\omega_{1}-t \omega_{3}, \quad \alpha_{2}=\omega_{2}-t \omega_{4}, \quad \alpha_{3}=\theta_{\mathbb{T}} .
$$

The integrability condition for \mathcal{D} is given the condition

$$
d \alpha_{i} \equiv 0 \quad\left(\bmod \alpha_{1}, \alpha_{2}, \alpha_{3}\right) .
$$

[Now comes this calculation; or rather, work on B, not $\mathbb{T} M$, basicaly thinking of B as a reduction of the frame bundle of $\mathbb{T} M$ to $H \subset$ $G L_{5}(\mathbb{R})$.]

