
GEOMETRIC REALIZATIONS OF HYPERELLIPTIC CURVES 

William A. Veech * 

Rice University 
Mathematics Department 
Houston, Texas 77251 

INTRODUCTION 

Every elliptic curve w 2 - z(z -l)(z - y) = O,y -=I 0,1 is a torus and, in particular, 
can be represented as an identification space of a parallelogram. The gluing maps 
are translations. The present paper is concerned with the question of a corresponding 
realization of hyperelliptic curves 

n 

w 2 - 1Hz - Yj) = 0 
j=O 

(0.1) 

where Y E Cn+I,Ya -=I Yb,a -=I b. The curve (0.1) has genus where [·1 is the greatest 
integer function. We shall prove 

Theorem 0.1. Each curve (0.1) can be realized as the identification space of a centrally 
symmetric simple planar 2n-gon Py with opposite sides glued by translation. For an open 
set of y, 0/ full measure in the parameter space, Py can be taken to be convex. 

In genus one the exceptional set of Theorem 0.1 is empty. We shall prove 

Theorem 0.2. If 9 > 0, the curve w 2 - (1 - Z29+1) = 0 cannot be realized as the 
identification space of a centrally symmetric convex 4g-gon. 

The first statement in theorem 0.1 is a consequence of the analysis of a natural map 
from a certain space of polygons to the moduli space of punctured spheres. The second 
statement is 'shown in Section 4 to be a consequence of known facts about an action of 
G = S£(2, JR) on a circle bundle over the moduli space. Finally, Theorem 0.2 will be 
seen to be a consequence of a study of "periodic points" for this G action, points whose 
isotropy groups are lattices in G. 
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1. SYMMETRIC POLYGONS 
Fix n > 1, and define P( n) to be the set of pairs p = (P, v) such that P e is a simple, 
symmetric 2n-gon and v is a vertex of P. 

Given p E pen), set vo(p) = v, and let Vj(P), ° :::; j < 2n be the remaining vertices 
of P, arranged in counterclockwise order. The map H : pen) en, define by 

H(p) = (vo(p), .. ·, Vn-l(P)) (Ll) 

is a one-to-one map of pen) onto an open subset of en. In particular, pen) carries the 
natural structure of a complex manifold of dimension n. 

Continuing with p E pen), denote the edges of P by ej(p) = [Vj_l(P),Vj(p)], 1 :::; 
j :::; 2n. Glue ej to ej+n by parallel translation. The identification space is a Riemann 
surface with ideal points corresponding to the vertices of P. As the gluing defined above 
sends Vj(p) to Vj+n-l(P), the equivalence class [Vj] is identified as the set of Vk such that 
k is in the orbit of j under the map i i + n - 1 (mod 2n). When n is even, there is 
one vertex class, and when n is odd, there are two, [vol and [vn]. 

X(p) denote the Riemann surface defined above. The total angle of P at the vertex 
class is (n-l)271' when n is even. When n is odd the total angle at each ofthe two vertex 
classes is (n;l )(271') (because the isometry z -z of P interchanges these classes). If 
wp is the holomorphic I-form on X(p) determined by dz, then Wp has, by the total 
angle count just made, one or two zeros whose total order is n - 2 (n even) or n - 3 (n 
odd). As this total order must also be 2g - 2, g = genus(X(p)), we have 

(1.2) 

The involution r(z) = -z induces a holomorphic involution, also denoted r, of X(p). 
This involution has fixed points the (equivalence class of) points 0, Uj(p) = HVj(p) + 
Vj_l(p)),1 :::; j :::; n. When n is even, the vertex class is fixed. As we have already 
mentioned, the vertex classes are interchanged by r when n is odd. 

Proposition 1.3. IIp E P(n), then X(p) is hyperellipiic. 

Proof. The involution r has n + 1 fixed points if n is odd and n + 2 fixed points if 
n is even. In either case this number is 2 + 2 = 2g(X(p)) + 2, and the proposition 
obtains. 

In what follows we shall use uo(p) = O,uj(p), 1:::; j :::; n, to denote the points defined 
above as,points in X(p). The proposition implies there exists a unique holomorphic 
map 

F: X(p) eU {oo} (1.4) 

such that (a) For = F, (b) F(O) = 0, F(ud = 1, and F([voD = 00 and (c) F is a 
biholomorphism modulo r. Of course, F([vnD = 00 when n is odd. 
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With notations as above, define y E Cn+1 by Yo = F(O) and Yj = F(uj),1 :::; j :::; n. 
Set up the quadratic differential 

dz2 
qy (z) = -:n=----

II(z-Yj) 
j=O 

There exists ±a E C* I ± 1, C* = c \ 0, such that 

F*(a2qy) = w;. 
Accordingly, we define 

iP(p) = (y, (±a)). 

The map 
iP : P( n) --+ Dn x C* I ± 1 

is now well-defined. 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

Remark 1.9. Let p = (P,v) E pen) and j3 E Co. If j3p = (j3P,j3v), and ifiP(p) = 
(y, ±a), then clearly 

iP(j3p) = (y, ±aj3). (1.10) 

Theorem 1.11. The map iP in (1.8) is holomorphic, locally one-to-one and surjective. 

Theorem 1.11 well be proved in Sections 2 and 3. 

2. SURJECTIVETY OF iP 
Fix n > 1 and y E Dn. Denote by X the Riemann surface of the curve w 2 - nj=o(z -
yj) = 0, and let r be the hyperelliptic involution. The I-form determines, up to a 
factor ±I, a holomorphic I-form w on X. The zero set E of w lies above 00 and has 
one element (of order n - 2) when n is even and two elements (of order n;3) when n is 
odd. 

Local solutions of df = w determine an atlas U on X \ E with transitions which 
are local translations. If 0 E lR. let :F( 0) denote the oriented foliation of X \ E which 
is the lift by U charts of the foliation of C by lines which make an angle 0 with the 
horizontal. Leaves of F(O) are geodesic for the metric Iw1 2 • The fact TOW = -w implies 
:F(O + 11") = r:F(O). 

We shall now make a construction. The first part of the construction will use only 
the properties (a) TOW = -w, and (b) there exists Uo E X \ E such that r(uo) = uo. 
(Of course, (a) and (b) imply r2 = Id.) 

Let /0 be an Iwl2-geodesic in X \ E joining Uo to a point bEE. For example, a 
geodesic length minimizing path from Uo to E will do. Replace w by (w,I(1 = 1, if 
necessary and relabel so that /0 is a segment of an incoming separatrix of :F(O) at b. 
Define a = reb), and parametrize the union /0 U rCTo) as a geodesic path / from a to 
b, i.e., an :F(O) saddle connection. 
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For all but a countable set of 0 the foliation F(O) admits no saddle connection. Fix 
such a 0 with 0 < 0 < 71". The path '"Y above is transverse to F(O), and Poincare map 
of F(O) on'"Y decomposes X \ E into a set RI,"', Rk of maximal flowboxes with bases 
II, ... , h aligned along '"Y from left to right. (cf. [3]) The facts a, bEE and F( 0) admits 
no saddle connection imply that k exceeds by one the number of incoming separatrices 
of F(O). Indeed, the boxes and are joined along a common segment of incoming 
separatrix at x. E E (the zero set of w). 

Remark 2.1. When n, X and ware as in the first paragraph of this section, one finds 
readily that there are n-1 incoming separatrices, whether n is even or odd, and therefore 
there are n flowboxes, i.e., k = n above . 

• For each j the flowbox Rj is a parallelogram in U-coordinates. That is, there exists a 
U-chart function which maps Rj to a parallelogram based upon the real axis and having 
one angle O. Let Xo = a, and construct a path 0 from a to b by connecting X'_l to Xi 
by a geodesics in :::; i :::; k. The portion of Uj=l Ri which lies above'"Y and below 0 
is denoted Po. It is evident there exists a U-chart (Po, J) such that f(Po) is a polygon 
in the upper half plane with base on the real axis centered at O. 

As F( 0) and F( 0 + 71") coincide but for orientation of their leaves, the same parallelo-
grams are flowboxes for F( 0 + 71"). Now the top or Rj relative to F( 0) is the base of Rj 
relative to F(O + 71"). The construction which led to 0 above yields a path, denoted f, 

from b to a. f has the same segments as 0, but the orders of appearance and orientations 
are not the same. The region between '"Y and f (below '"Y), denoted Qo, is the domain of 
U-chart (Qo, h) such that h(Qo) is a polygon in the lower half plane with base on the 
real axis coinciding with the base of f(Po) above. 

Let 0 be the region consisting of Po, Qo and '"Y. The chart functions f and h coalesce 
on 0 to give U-chart (0, F) such that F(O) is a polygon with a diameter on the real 
axis, centered at O. 

As TF(O) = F(O + 71"), it must be that T(Po) = Qo, and this implies F 0 T = -F. 
Therefore, F(O) is a simple symmetric 2k-gon, k = number of flow boxes above. 

Thus far we have used only (a) and (b) above. It has been noted in Remark 2.1 
that in the case of interest k = n. We shall find a further restriction imposed by the 
existence of 2g(X) + 2 fixed points for T in the hyperelliptic case. When n is even, this 
number is n + 2; when n is odd, it is n + 1. The center of 0 is fixed by T, and no other 
T-fixd point lies in O. T fixes the single vertex class when n is even or odd, the set 0\ E 
will contain n fixed point of T. H the component Oi of 0 which connects Xi-l to Xi inside 

contains a T fixed point, then T(R.) = Ri, T(Oi) = Oi, and Ri, i.e., Oi, contains only 
one fixed point. As there are exactly n parallelograms, it must be that T(R;) = Ri for 
1:::; i :::; n. 

The path f from b to a is in all cases comprised of segments T(Ol), T(02),···, T(On) in 
that order. However, when T has 2g + 2 fixed points, we have proved that T(O.) = 0; 
but for parametrization. It follows that X is the identification space of F( 0) obtained 
by gluing opposite edges, i.e., edges i and i + n, 1 :::; i :::; n. 

Recall that we are seeking a pair p = (P,v) E pen) such that cp(p) = (y,±o:), where 
y is as given above and 0: E C*. In our construction we have associated to (X, w) a 
centrally symmetric simple polygon P = F( 0) which realizes X. The construction 
made use of an arbitrary Weierstrass point uo E X \ E. It is therefore no loss of 
generality to suppose uo sits above 0 on the Riemann surface of w 2 - fIi=o(z - Yi) = o. 
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Now choose v EPa vertex so that in the canonical ordering Ul = Ul(P, v) sits above 
1 = Yl. By construction ofthe map if> there exists a E C* such that if>((P, v)) = (y, ±a). 
As y E !1n is arbitrary, surjectivity of if> is now a consequence of Remark 1.9. 

3. if> IS A LOCAL BIHOLOMORPHISM 
The purpose of this section is to prove that the map if> : P(n) -4 !1n x C* / ± 1 is a 
local biholomorphism and thus to complete the proof of Theorem 1.11. We shall first 
prove if> is holomorphic, but only to establish its continuity. Using this continuity and 
a determinant calculation from [4] we shall then prove if> admits a right inverse on a 
neighborhood of each image point. 

Fix p = (P, v) E P(n), and let P be triangulated by a symmetric triangulation t 
whose vertex set is the set of vertices of P. If q = (Q, u) is sufficiently close to p, 
then t determines a triangulation t(q) of Q with similar properties. Let Fp,q : X(p) -4 

X(q) be the canonical PL map determined by the PL-structures t(p) and t(q)'. Fpq 
preserves the ordering of Weierstrass points. A standard calculation (cf.[4]) show that 
the Beltrami differential f.Lp,q associated to Fpq varies holomorphically in q for p fixed. 
Moreover, if Tp, Tq are the hyperelliptic involutions, symmetry of t implies Fpq 0 Tp = 
Tq 0 Fpq and therefore f.Lp,q 0 Tp = f.Lp,q. It follows that Fpq induces a quasi conformal 
homeomorphism Hpq from X(p)/Tp to X(q)/Tq and that Beltrami differential varies 
holomorphically with q. Ifif>(p) = (y(p),±a(p)) and if>(q) = (y(q),±a)), the definitions 
imply Hpq(y(p)) = y(q), and therefore y(q) varies holomorphically with q. It follows 
easily from the definition of if> that ±a(q) varies holomorphically with q. 

In order to construct local right inverses fix p = (P, v) with if>(p) = (y, ±a(p)), as 
above. Let F : X (p) -4 C U {oo} be the map (1.4) which is used in the definition of 
if>. For 1 :::; j :::; n let Ij be the segment of oP from Uj(p) = t(Vj(p), Vj_l(P)) to Vj(p). 
Also, let 10 be a smooth path in P from 0 to Vo = v. Define Jj = Fbj),O :::; j :::; n. 
Jj is a path from yAp) to 00. Choose a version of = TJ such that F*(aTJ) = w, and 
declare TJ to have values on Jj which are limits from the lefthand side of Jj . We have 

vo(p) 

vAp) - Vj_l(P) (3.1) 

As y varies in a small neighborhood of y(p) it is possible to vary paths JAy) (from Yi 
to 00) and the definition of = TJy in such a way that 

(3.2) 

is holomorphic in (y, (3). We restrict the subscripts to 1 :::; j :::; n because the remaining 
integral is minus the sum of the other integrals. There are n integrals and n parameters 
(y, (3). If (y, (3) is sufficiently close to (y(p), a(p)) then lJ1(y, (3) determines a symmetric 
polygon whose distinguished vertex is a function (negative sum) of the integrals (3.2). 
As if> is continuous, the relation (3.1) implies if> is locally biholomorphic as soon as IJ1 
has this property. 

The Jacobian determinant of the map IJ1 has been calculated in [4] in a more general 
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setting. One finds 

It follows that W is nowhere singular. Theorem 1.11 is thereby proved. 

4. DYNAMICS OVER MODULI SPACE 
Theorem 1.11 asserts that the map <I> : P( n) -+ f2n x C* / ± 1 is a surjective local 
biholomorphism. Let>. be the euclidean· volume element on P(n). The determinant 
formula (3.3) suggests a prescription for a volume element v on f2n x C* / ± 1 

v = 1,B1 2n-2 II IYk - yd(d,B 1\ diJ) A. dYi 1\ diJi. (4.1) 
2 O$k<l$n i=2 

There exists a constant c( n) > 0 such that 

>. = <I>*(c(n)v). (4.2) 

It follows that>. projects to a volume element on the equivalence relation determined 
by <I>. 

If p = (P, v) E P(n), we denote the area of P by N(p). If <I>(p) = (y, ±a), then but 
for a dimensional constant 

(4.3) 

where w 2 = IIj=o(z - Yj). In what follows we ta.ke (4.3) for the definition of N(P). 
Also, express the right-hand side of (4.3) as lal2 M(y) so that 

N(p) = lal2 M(y). ( 4.3') 

Set up the (2n - l)cform (with a = lale iO ) p, where 

lal2n- 1 n (i ) P = -- II IYi - yd-2 1\ -dYj 1\ dih 1\ dO 
M(y) O$k<l$n j=2 2 

and observe that, up to a scale factor, d(lal 2 M(y)) 1\ P = v. The restriction of p to the 
constant norm surface lal2 M(y) = 1 is the form 

n . 

dO 1\ 1\ 1\ di}j) 
j=2 (4.4) 

J.l = M(yt II IYk - yd 2 • 

O$k<l$n 

Recall from [4]: if An = {(y, ±a)IIaI2 M(y) = I}, then 

[ J.l < 00. JAn (4.5) 
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Identify Il with the measure it defines on An. 
Fora moment we shall use G to denote the group SU(l, 1) SL(2, JR) of2x2 complex 

matrices A = 1) such that detA = 1. G acts R-linearly on C by Az = ez + fjz, and 

this induces an action 'of G on Pen), e.g. coordinatewise in (1.1). Denote this latter 
action by p -+ TAP. 

If p E Pen) and A E G, then TA induces a quasiconformal homeomorphism from 

X(p) to X(TAP)' As A*dz = edz + fjdz, A = 1), the homeomorphism hA, which 

is real analytic away from the vertex class(es), satisfies h'AwTAP = ewp + fjwp. 
Let PloP2 E Pen) be such that Cfl(Pl) = ()(P2). The identity map on CU{oo} lifts to a 

biholomorphism </> : X(pt} -+ X(P2) such that </>*wP2 = WP1 and </> preserves the ordering 
of the Weierstrass points. If : X(Pi) -+ X(TAPi) are as above, the composition 
</>A : X(TAPl) -+ X(TAP2) where </>A = 0 </> 0 satisfies </>'AwTAP2 = WTAP1' and 
therefore Cfl(TAPl) = Cfl(TAP2)' The action of G on Pen) descends to an action on 
On x C*/±1. 

It is obvious from the definitions that the G-action preserves the volume element A on 
Pen). As A projects to the volume element v «·P)), the action of G which is induced 
upon On X C* / ± 1 by Cfl must preserve v. As detA = 1, A E G;the G action preserves 
the area function N(p). It follows from (4.3') and the definition (4.4) of the restriction 
volume from Il on An that Il is also G-invariant. 

Theorem 4.6. The triple (An' Il, G) is a real analytic, ergodic, finite measure preserv-
ing action. 

Proof. Finiteness has been noted above. (An' G) is a component of a stratum, in the 
sense of and ergodicity of topological components is established in [6]. 

5. CLOSED ORBIT AND CONVEXITY 
Theorem 4.6 implies that almost every u E An has a dense G-orbit. We turn now to a 
discussion of behavior at the opposite extreme, points u such that Gu is closed. 

Denote by r(u) the isotropy group of u E An. We recall that r(u) enjoys three 
properties for all u: 1. r(u) is discrete. 2. r(u) is not cocompact. 3. If A E r(u), then 
tr(A) is an algebraic integer. Generically, r(u) is trivial. However, for a dense set of 
u r(u) is a lattice. For example, by the Remark, p.579 in [5] r(u) is commensurable 
with SL(2,Z) when u = Cfl(p) is such that H(p) E C*Qn (H(·) is defined in (Ll).) 
Consideration of the integrals (3.1 )-(3.2) yields a corresponding criterion for u = (y, ±a) 
which depends upon y and integrals of the I-form w2 = IIi=o{z - yj). 

In this section we shall make use of consequences of an isotropy group being a lattice 
to establish 

Theorem 5:1. Let X{p) be the Riemann surface of the equation w2 = 1 - Z29+I, and 
let Wg be a lift to X{g) of the l-form The pair (X{g),wg) cannot be realized as 
(X{p),wp) for any P = (P, v) E p{2g) such that P is a convex polygon. 

For each n let pe{n) be the set of P = (P,v) E Pen) such that P is convex. Clearly, 
Gpe{n) = Pe{n) and pe{n) contains a nonempty open set. If An.e = Cfl{pe{n)), then 
Theorem 4.6 implies An.e is a dense set of full measure; indeed, its interior has this 
property. 
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Question 5.2. Let An •b = An \ An •c • If n > 3, does there exist u E An •b such that Gu 
is not closed? If the answer is 'yes', does there exist u E An.b such that Gu is dense in 
An •b ? 

We shall now give the proof of Theorem 5.1. To begin let (X,w) be a pair consisting 
of a closed Riemann surface X and a nontrivial holomorphic I-form w. Let U be the 
atlas on X \ E, E = w-IO, as in Section 2. Denote by Aff(U) the group of orientation 
preserving homeomorphism ¢ of X which are affine in U-coordinates. :F(O), 0 E JR, has 
the same meaning as in Section 2. 

Let r = r(U) be the image in G of Aff(U) under the map which assigns to ¢ E Aff(U) 
its derivative D¢ in U-coordinates. r(U) enjoys the properties 1-3 which were listed 
above for r(u)([5]). 

If 0 E JR., define A(O) Aff(U) to be the set of ¢ such that D¢(cos 0, sin 0) = 
(cosO,sinO). Notice that A(O) is a subgroup and for each ¢ E A(O) D¢ E r(u) is 
unipotent. 

Lemma 5.3. Assume r(U) is a lattice. The following are equivalent: 

(A) :F(O) admits a saddle connection. 

(B) DA(O) is nontrivial. 

(C) :F(O) partitions X \ E into cylinders of closed leaves. 

A proof of the lemma may be found in [5]. 

Lemma 5.4. Let (X, w) be such that r(U) is a lattice with a single cusp. If 017 O2 E JR. 
are such that :F(O;) admits a saddle connection for j = 1,2, there exists ¢ E A1J(U) 
such that ¢:F( Od = :F( O2) or:F( -02). 

Proof. The assumptions combine to imply DA(Od and DA(02) are conjugate in r(U). 
Choose'I/J E Aff(U) such that (D'I/J)-l DA(02)(D'I/J) = DA(Od. If 'I/J:F(Od :F(O) then 
o is such that DA(O) = DA(02), and this implies 0 = O2 or -02 modulo 271". That is, 
'I/J:F(Od = :F(02) or :F( -02). The lemma is proved. 

To apply the lemma let (X,w) be such that r(U) is a lattice with one cusp, and let 
00 E JR be such that :F(00) decomposes X\E into cylinders of closed leaves. Denote the 
maximal such cylinders by CI,···, Cn and let their heights be denoted hI,···, hr. Now 
suppose 0 E JR. is such that :F( 00 ) admits a saddle connection. Lemma 5.4 implies that 
there exists ¢ E Aff(U) and a choice of ± such that ¢:F(00) = :F(±O). As D¢ is a linear 
transformation, there exists t > 0 such that the cylinder ¢C; has height thj, 1 ::::; j ::::; r, 
relative to :F( 0). 

Proof of,Theorem 5.1. We take (X,w) = (Xg,Wg), g> 1. It is proved in [5] that 
r(U) is a (2,29 + 1,00) triangle group and, in particular, r(U) has only one cusp. In 
[5] it is shown that for one choice of 0 :F( 0) has exactly 9 maximal cylinders of closed 
leaves which, up to a common constant factor have lengths h; = sin 71") ,1 ::::; j ::::; g. 
If the cylinders are denoted Ct.· .. , Cg , there are two additional facts to record for later 
reference. A.· aCI c2,acg Cg _ I and ac; C;_l u Cj+I> 1 < j < g. B. If 1 < j < g, 
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then up to a common constant factor each side of Cj is comprised of a pair of saddle 
connections of lengths sin and sin We also record the elementary inequality 

. 27r(j - 1) . 27rj 
2sm 2 > sm---

9 + 1 2g + 1 
(2 ::; j ::; g) 

( . . 211"(j-1) . 211" < . 211"(j-1) 2 < . < ) 
sm 2g+1 < sm 2g+1 + sm 2g+1 _ sm 2g+1 ' _ J _ 9 . 

(5.5) 

Now suppose p = (P, v) E P(2g) is such that P is convex and (X(p),wp) is isomorphic 
to (X(g),Wg). We shall prove this leads to a contradiction. The vertices of P are ordered 
as v = va, Vb·· . in the usual way. 

Let lj denote the oriented segment ::; j ::; 2g. We observe first that these 
segments cannot be pairwise parallel. For if they are, the foliation F( B), where B 
is the common direction, has cylinders of lengths IIl111, IIl111 + II l211,···, Illg-111 + Illgll. 
Moreover, central symmetry and convexity imply IIl111 ::; IIl211 ::; ... ::; IIlgll. When 
9 = 2, one concludes that h2 > 2hb contradicting hj = sin (\-1 7r) ,j = 1,2. When 

9 > 2, one concludes hI < h2 < . < hg contradicting hj = sin 7r). 
Let k be the first positive integer such that h is not parallel to ll. The edges 

e1,···, ek-1 are cross-sections of cylinders D1,···, Dk- 1 of closed leaves, and these 
cylinders have on each side a pair of saddle connections of lengths lj aiId lj_1,1 ::; 
j ::; k - 1(l0 = 0). Property B and the fact every leaf of F(B) has length at least IIl111 
imply IIlj II = sin 2211,1 ::; j < k. 

The left side of lk-1 is one of the saddle connections on the right hand side of Dk. Par-
allel segments from the vertices V2g+k and V2g-k do not coincide because, by assumption, 
lk and lk-1 are not paralell. It follows that the length of the second saddle connection 
on the right side of Dk has length at least 2lk _ 1 • This implies sin ::; sin 
contradicting (5.5). We have reached a contradiction, and Theorem 5.1 is proved. 

Remark 5.6. It is not difficult to see that each p E P(3) admits a convex equivalent. 
We believe that an argument similar to the one above will show that the curves w 2 = 
1 - z2g+2,g > 1 equipped with do not admit convex representatives in P(2g + 1). 

6. CHARACTERIZATION OF CLOSED ORBITS 
For any u E An the canonical map G If( u) -+ Gu is continuous. Consideration of 
codimension three transversals to the G action shows that this map is a homeonorphism 
when Gu is closed in An. 

Lemma 6.1. If Gu is closed, and if f( u) is viewed as a Fuchsian group in the disc, 
the limit set of f( u) is all of Sl .. 

Proof. Let K be the rotation subgroup of G, and let gt = t E 

According to [1) it is true for almost all k E K that the w-limit set of ku (in An) 
relative to {gtlt E is nonempty. For the disc picture this translates to the statement 
that for almost all k the geodesic from zero in direction k does not diverge to 00 in 
f \ D., D. =disc. It follows in particular that f( u) has no domain of discontinuity on Sl. 
That is, f( u) has Sl for its limit set. 

Proposition 6.2. If Gu is closed, and if feu) is finitely generated, then r(u) IS a 
lattice. 

225 



Proof. A finitely generated Fuchsian group with limit set Sl must be a lattice. 

Question 6.3. If u E An, is f( u) finitely generated? 

J.Smillie has observed that Proposition 6.2 is true without the assumption that f(u) 
is finitely generated. Question 6.3 appears to be open. 

We shall give an outline of a proof of Smillie's theorem (for the setting of (An' G)): 
1. If Vn is the probability measure on An which is the image of normalized Haar 

measure on K under k - ku, the orbit Gvu is relatively compact in the weak-* topology 
of probability measures on An. This is implicit in [1] and follows from its techniques. 

2. If v is a cluster point of {gtvul t - +oo}, then v is invariant under the group N 
of upper triangular unipotent matrices. This is also from [1]. 

3. Let D = {v E An llimt-+oo gtV = oo}. The facts Gvu is relatively compact in 
the space of probability measure and v above is a cluster point imply v(D) = o. In 
particular, a.e. ergodic component Ve of v satisfies ve(D) = O. 

4. If Ve is as in 3., then Ratner's Main Theorem [2] implies GVe = Ve. 

Step 4 establishes the fact that when Gu is closed, G jf( u) supports a finite G-
invariant measure. Therefore, f(u) is a lattice. 

References 

226 

1. Kerckhoff,S., Masur H., Smille J., Ergodicity of billiard flows and quadratic 
differentials, Ann. of Math. 124(1986), 293-311. 

2. Ratner, M., On Roghunathan's measure conjecture, Ann. of Math. 134 
(1991),545-607. 

3. Strebel, K., Quadratic Differentials, Berlin-Heidelberg-New York, Springer 
1984. 

4. Veech, W.A., Flat Surfaces, Am. J. of Math. 115(1993), in press. 
5. --, Teichmiiller curves in moduli space, Eisenstein series and an appli-

cation to triangular billiards, Inv. Math. 97(1989), 553-583. 
6. --, The Teichmiiller geodesic flow, Ann. of Math. 124(1986), 441-530. 



INDEX 

Associated (Krieger) flow, 2 

Base transformation, 6 
Billiard, bounded scattering, 169 
Box dimension, 61 

Chacon map, 108 
Chain recurrent set, 65 
Coalescence, 28 
Cocycle, 1,27,104 
Continued fraction, 180,188 
Copying lemma, 18 
Critical temperature, 61 
Cylinder flow, 28,42 

Density-wave instability, 147 
Domain exchange transformation, 95 

Equivalence, 
Kakutani, even Kakutani, 193 
a-equivalence, 194 

Expansive map, 63 

Fatou set, 108 
Ford circle, 183 
Fredholm matrix, 162 

Geodesic, 182,219 
Geodesic flow, 202 

Height function, 6 
Homogeneous Banach space, 35 
Hopf 7 
Hyperelliptic curve, 217 

Infra-nilmanifold, 64 
Invariant factor, 2 

Julia set, 118 

Kneading map, 90 
Kosma's inequality, 36 

Lacunary cocycle, 7 

Law of large number, 127 
Legendre denominator, 36 
Length spectrum, 169 
Lobachevsky space, 203 
Lyapunov exponent, 151 

Markov partition, 212,171 
Maximal oscillation, 89 
Modified Jacobi-Perron algorithm, 95 
Moduli space, 222 
Mobius transformation, 204 
Monodromy (of semi-conjugacy), 67 

Nested fractal, 140 
Normality of numbers, 51 

Odometer, 32 
Orbit cocycle, 4 

Perron-Frobenius operator, 161 
Piecewise linear transformation, formal, 167 
Poisson law, 80 
Postcritical set, 118 
Preperiodic (strictly), 119 
Pseudo orbit, 65 
p-stream diffusion, 134 

Rational measure, 105 
Renewal equation, 163 
Return time process, 80 
Rigidity time, 30 
Ruelle-Artin-Mazur zeta function, 83 

Self-similar set, 117 
Sierpinski gasket, 132,118 
Signed symbolic dynamics, 164 
Special flow representation, 6 
Squashablility, 27 
Strange attractor, 151 

Type III>., 108 

Uniformly distributed, 211 
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