GEOMETRIC REALIZATIONS OF HYPERELLIPTIC CURVES

William A. Veech *
Rice University
Mathematics Department
Houston, Texas 77251

INTRODUCTION

Every elliptic curve $w^{2}-z(z-1)(z-y)=0, y \neq 0,1$ is a torus and, in particular, can be represented as an identification space of a parallelogram. The gluing maps are translations. The present paper is concerned with the question of a corresponding realization of hyperelliptic curves

$$
\begin{equation*}
w^{2}-\prod_{j=0}^{n}\left(z-y_{j}\right)=0 \tag{0.1}
\end{equation*}
$$

where $y \in \mathbb{C}^{n+1}, y_{a} \neq y_{b}, a \neq b$. The curve (0.1) has genus $\left[\frac{n}{2}\right]$, where $[\cdot]$ is the greatest integer function. We shall prove

Theorem 0.1. Each curve (0.1) can be realized as the identification space of a centrally symmetric simple planar $2 n$-gon P_{y} with opposite sides glued by translation. For an open set of y, of full measure in the parameter space, P_{y} can be taken to be convex.

In genus one the exceptional set of Theorem 0.1 is empty. We shall prove
Theorem 0.2. If $g>0$, the curve $w^{2}-\left(1-z^{2 g+1}\right)=0$ cannot be realized as the identification space of a centrally symmetric convex $4 g$-gon.

The first statement in theorem 0.1 is a consequence of the analysis of a natural map from a certain space of polygons to the moduli space of punctured spheres. The second statement is shown in Section 4 to be a consequence of known facts about an action of $G=S L(2, \mathbb{R})$ on a circle bundle over the moduli space. Finally, Theorem 0.2 will be seen to be a consequence of a study of "periodic points" for this G action, points whose isotropy groups are lattices in G.

[^0]The author wishes to dedicate this paper to the Hayashibara Company in recognition of its generous support for science in general and mathematics in particular, through the Hayashibara Forums.

1. SYMMETRIC POLYGONS

Fix $n>1$, and define $\mathcal{P}(n)$ to be the set of pairs $p=(P, v)$ such that $P \subseteq \mathbb{C}$ is a simple, symmetric $2 n$-gon and v is a vertex of P.

Given $p \in \mathcal{P}(n)$, set $v_{0}(p)=v$, and let $v_{j}(P), 0 \leq j<2 n$ be the remaining vertices of P, arranged in counterclockwise order. The map $H: \mathcal{P}(n) \rightarrow \mathbb{C}^{n}$, define by

$$
\begin{equation*}
H(p)=\left(v_{0}(p), \cdots, v_{n-1}(p)\right) \tag{1.1}
\end{equation*}
$$

is a one-to-one map of $\mathcal{P}(n)$ onto an open subset of \mathbb{C}^{n}. In particular, $\mathcal{P}(n)$ carries the natural structure of a complex manifold of dimension n.

Continuing with $p \in \mathcal{P}(n)$, denote the edges of P by $e_{j}(p)=\left[v_{j-1}(p), v_{j}(p)\right], 1 \leq$ $j \leq 2 n$. Glue e_{j} to e_{j+n} by parallel translation. The identification space is a Riemann surface with ideal points corresponding to the vertices of P. As the gluing defined above sends $v_{j}(p)$ to $v_{j+n-1}(p)$, the equivalence class $\left[v_{j}\right]$ is identified as the set of v_{k} such that k is in the orbit of j under the map $i \rightarrow i+n-1(\bmod 2 n)$. When n is even, there is one vertex class, and when n is odd, there are two, $\left[v_{0}\right]$ and $\left[v_{n}\right]$.
$X(p)$ denote the Riemann surface defined above. The total angle of P at the vertex class is $(n-1) 2 \pi$ when n is even. When n is odd the total angle at each of the two vertex classes is $\left(\frac{n-1}{2}\right)(2 \pi)$ (because the isometry $z \rightarrow-z$ of P interchanges these classes). If w_{p} is the holomorphic 1 -form on $X(p)$ determined by $d z$, then w_{p} has, by the total angle count just made, one or two zeros whose total order is $n-2$ (n even) or $n-3$ (n odd). As this total order must also be $2 g-2, g=\operatorname{genus}(X(p))$, we have

$$
\begin{equation*}
g=g\left(X_{p}\right)=\left[\frac{n}{2}\right] \tag{1.2}
\end{equation*}
$$

The involution $\tau(z)=-z$ induces a holomorphic involution, also denoted τ, of $X(p)$. This involution has fixed points the (equivalence class of) points $0, u_{j}(p)=\frac{1}{2}\left(v_{j}(p)+\right.$ $\left.v_{j-1}(p)\right), 1 \leq j \leq n$. When n is even, the vertex class is fixed. As we have already mentioned, the vertex classes are interchanged by τ when n is odd.

Proposition 1.3. If $p \in \mathcal{P}(n)$, then $X(p)$ is hyperelliptic.
Proof. The involution τ has $n+1$ fixed points if n is odd and $n+2$ fixed points if n is even. In either case this number is $2\left[\frac{n}{2}\right]+2=2 g(X(p))+2$, and the proposition obtains.

In what follows we shall use $u_{0}(p)=0, u_{j}(p), 1 \leq j \leq n$, to denote the points defined above as points in $X(p)$. The proposition implies there exists a unique holomorphic map

$$
\begin{equation*}
F: X(p) \rightarrow \mathbb{C} \cup\{\infty\} \tag{1.4}
\end{equation*}
$$

such that (a) $F \circ \tau=F$, (b) $F(0)=0, F\left(u_{1}\right)=1$, and $F\left(\left[v_{0}\right]\right)=\infty$ and (c) F is a biholomorphism modulo τ. Of course, $F\left(\left[v_{n}\right]\right)=\infty$ when n is odd.

With notations as above, define $y \in \mathbb{C}^{n+1}$ by $y_{0}=F(0)$ and $y_{j}=F\left(u_{j}\right), 1 \leq j \leq n$. Set up the quadratic differential

$$
\begin{equation*}
q_{y}(z)=\frac{d z^{2}}{\prod_{j=0}^{n}\left(z-y_{j}\right)} \tag{1.5}
\end{equation*}
$$

There exists $\pm \alpha \in \mathbb{C}^{*} / \pm 1, \mathbb{C}^{*}=\mathbb{C} \backslash 0$, such that

$$
\begin{equation*}
F^{*}\left(\alpha^{2} q_{y}\right)=w_{p}^{2} . \tag{1.6}
\end{equation*}
$$

Accordingly, we define

$$
\begin{equation*}
\Phi(p)=(y,(\pm \alpha)) . \tag{1.7}
\end{equation*}
$$

Define $\Omega_{n} \subseteq \mathbb{C}^{n+1}$ to be

$$
\Omega_{n}=\left\{y \in \mathbb{C}^{n+1} \mid y_{0}=0, y_{1}=1, y_{a} \neq y_{b}, a \neq b\right\}
$$

The map

$$
\begin{equation*}
\Phi: \mathcal{P}(n) \rightarrow \Omega_{n} \times \mathbb{C}^{*} / \pm 1 \tag{1.8}
\end{equation*}
$$

is now well-defined.
Remark 1.9. Let $p=(P, v) \in \mathcal{P}(n)$ and $\beta \in \mathbb{C}^{*}$. If $\beta p=(\beta P, \beta v)$, and if $\Phi(p)=$ ($y, \pm \alpha$), then clearly

$$
\begin{equation*}
\Phi(\beta p)=(y, \pm \alpha \beta) \tag{1.10}
\end{equation*}
$$

Theorem 1.11. The map Φ in (1.8) is holomorphic, locally one-to-one and surjective.
Theorem 1.11 well be proved in Sections 2 and 3.

2. SURJECTIVETY OF Φ

Fix $n>1$ and $y \in \Omega_{n}$. Denote by X the Riemann surface of the curve $w^{2}-\prod_{j=0}^{n}(z-$ $\left.y_{j}\right)=0$, and let τ be the hyperelliptic involution. The 1 -form $\frac{d z}{w}$ determines, up to a factor ± 1, a holomorphic 1 -form ω on X. The zero set E of ω lies above ∞ and has one element (of order $n-2$) when n is even and two elements (of order $\frac{n-3}{2}$) when n is odd.

Local solutions of $d f=\omega$ determine an atlas \mathcal{U} on $X \backslash E$ with transitions which are local translations. If $\theta \in \mathbb{R}$ let $\mathcal{F}(\theta)$ denote the oriented foliation of $X \backslash E$ which is the lift by \mathcal{U} charts of the foliation of \mathbb{C} by lines which make an angle θ with the horizontal. Leaves of $\mathcal{F}(\theta)$ are geodesic for the metric $|w|^{2}$. The fact $\tau^{*} \omega=-\omega$ implies $\mathcal{F}(\theta+\pi)=\tau \mathcal{F}(\theta)$.

We shall now make a construction. The first part of the construction will use only the properties (a) $\tau^{*} \omega=-\omega$, and (b) there exists $u_{0} \in X \backslash E$ such that $\tau\left(u_{0}\right)=u_{0}$. (Of course, (a) and (b) imply $\tau^{2}=I d$.)

Let γ_{0} be an $|\omega|^{2}$-geodesic in $X \backslash E$ joining u_{0} to a point $b \in E$. For example, a geodesic length minimizing path from u_{0} to E will do. Replace ω by $\zeta \omega,|\zeta|=1$, if necessary and r elabel so that γ_{0} is a segment of an incoming separatrix of $\mathcal{F}(0)$ at b. Define $a=\tau(b)$, and parametrize the union $\gamma_{0} \cup \tau\left(\gamma_{0}\right)$ as a geodesic path γ from a to b, i.e., an $\mathcal{F}(0)$ saddle connection.

For all but a countable set of θ the foliation $\mathcal{F}(\theta)$ admits no saddle connection. Fix such a θ with $0<\theta<\pi$. The path γ above is transverse to $\mathcal{F}(\theta)$, and Poincaré map of $\mathcal{F}(\theta)$ on γ decomposes $X \backslash E$ into a set R_{1}, \cdots, R_{k} of maximal flowboxes with bases I_{1}, \cdots, I_{k} aligned along γ from left to right. (cf. [3]) The facts $a, b \in E$ and $\mathcal{F}(\theta)$ admits no saddle connection imply that k exceeds by one the number of incoming separatrices of $\mathcal{F}(\theta)$. Indeed, the boxes R_{i} and R_{i+1} are joined along a common segment of incoming separatrix at $x_{i} \in E$ (the zero set of ω).

Remark 2.1. When n, X and ω are as in the first paragraph of this section, one finds readily that there are $n-1$ incoming separatrices, whether n is even or odd, and therefore there are n flowboxes, i.e., $k=n$ above.

- For each j the flowbox R_{j} is a parallelogram in \mathcal{U}-coordinates. That is, there exists a \mathcal{U}-chart function which maps R_{j} to a parallelogram based upon the real axis and having one angle θ. Let $x_{0}=a$, and construct a path δ from a to b by connecting x_{i-1} to x_{i} by a geodesics in $R_{i}, 1 \leq i \leq k$. The portion of $\bigcup_{j=1}^{k} R_{j}$ which lies above γ and below δ is denoted P_{0}. It is evident there exists a \mathcal{U}-chart $\left(P_{0}, f\right)$ such that $f\left(P_{0}\right)$ is a polygon in the upper half plane with base on the real axis centered at 0 .

As $\mathcal{F}(\theta)$ and $\mathcal{F}(\theta+\pi)$ coincide but for orientation of their leaves, the same parallelograms are flowboxes for $\mathcal{F}(\theta+\pi)$. Now the top or R_{j} relative to $\mathcal{F}(\theta)$ is the base of R_{j} relative to $\mathcal{F}(\theta+\pi)$. The construction which led to δ above yields a path, denoted ϵ, from b to $a . \epsilon$ has the same segments as δ, but the orders of appearance and orientations are not the same. The region between γ and ϵ (below γ), denoted Q_{0}, is the domain of \mathcal{U}-chart $\left(Q_{0}, h\right)$ such that $h\left(Q_{0}\right)$ is a polygon in the lower half plane with base on the real axis coinciding with the base of $f\left(P_{0}\right)$ above.

Let \mathcal{O} be the region consisting of P_{0}, Q_{0} and γ. The chart functions f and h coalesce on \mathcal{O} to give \mathcal{U}-chart (\mathcal{O}, F) such that $F(\mathcal{O})$ is a polygon with a diameter on the real axis, centered at 0 .

As $\tau \mathcal{F}(\theta)=\mathcal{F}(\theta+\pi)$, it must be that $\tau\left(P_{0}\right)=Q_{0}$, and this implies $F \circ \tau=-F$. Therefore, $F(\mathcal{O})$ is a simple symmetric $2 k$-gon, $k=$ number of flowboxes above.

Thus far we have used only (a) and (b) above. It has been noted in Remark 2.1 that in the case of interest $k=n$. We shall find a further restriction imposed by the existence of $2 g(X)+2$ fixed points for τ in the hyperelliptic case. When n is even, this number is $n+2$; when n is odd, it is $n+1$. The center of \mathcal{O} is fixed by τ, and no other τ-fixd point lies in \mathcal{O}. τ fixes the single vertex class when n is even or odd, the set $\delta \backslash E$ will contain n fixed point of τ. If the component δ_{i} of δ which connects x_{i-1} to x_{i} inside R_{i} contains a τ fixed point, then $\tau\left(R_{i}\right)=R_{i}, \tau\left(\delta_{i}\right)=\delta_{i}$, and R_{i}, i.e., δ_{i}, contains only one fixed point. As there are exactly n parallelograms, it must be that $\tau\left(R_{i}\right)=R_{i}$ for $1 \leq i \leq n$.

The path ϵ from b to a is in all cases comprised of segments $\tau\left(\delta_{1}\right), \tau\left(\delta_{2}\right), \cdots, \tau\left(\delta_{n}\right)$ in that order. However, when τ has $2 g+2$ fixed points, we have proved that $\tau\left(\delta_{i}\right)=\delta_{i}$ but for parametrization. It follows that X is the identification space of $F(\mathcal{O})$ obtained by gluing opposite edges, i.e., edges i and $i+n, 1 \leq i \leq n$.

Recall that we are seeking a pair $p=(P, v) \in \mathcal{P}(n)$ such that $\Phi(p)=(y, \pm \alpha)$, where y is as given above and $\alpha \in \mathbb{C}^{*}$. In our construction we have associated to (X, ω) a centrally symmetric simple polygon $P=F(\mathcal{O})$ which realizes X. The construction made use of an arbitrary Weierstrass point $u_{0} \in X \backslash E$. It is therefore no loss of generality to suppose u_{0} sits above 0 on the Riemann surface of $w^{2}-\prod_{j=0}^{n}\left(z-y_{j}\right)=0$.

Now choose $v \in P$ a vertex so that in the canonical ordering $u_{1}=u_{1}(P, v)$ sits above $1=y_{1}$. By construction of the map Φ there exists $\alpha \in \mathbb{C}^{*}$ such that $\Phi((P, v))=(y, \pm \alpha)$. As $y \in \Omega_{n}$ is arbitrary, surjectivity of Φ is now a consequence of Remark 1.9.

3. Φ IS A LOCAL BIHOLOMORPHISM

The purpose of this section is to prove that the map $\Phi: \mathcal{P}(n) \rightarrow \Omega_{n} \times \mathbb{C}^{*} / \pm 1$ is a local biholomorphism and thus to complete the proof of Theorem 1.11. We shall first prove Φ is holomorphic, but only to establish its continuity. Using this continuity and a determinant calculation from [4] we shall then prove Φ admits a right inverse on a neighborhood of each image point.

Fix $p=(P, v) \in \mathcal{P}(n)$, and let P be triangulated by a symmetric triangulation t whose vertex set is the set of vertices of P. If $q=(Q, u)$ is sufficiently close to p, then t determines a triangulation $t(q)$ of Q with similar properties. Let $F_{p, q}: X(p) \rightarrow$ $X(q)$ be the canonical PL map determined by the PL-structures $t(p)$ and $t(q) . F_{p q}$ preserves the ordering of Weierstrass points. A standard calculation (cf.[4]) show that the Beltrami differential $\mu_{p, q}$ associated to $F_{p q}$ varies holomorphically in q for p fixed. Moreover, if τ_{p}, τ_{q} are the hyperelliptic involutions, symmetry of t implies $F_{p q} \circ \tau_{p}=$ $\tau_{q} \circ F_{p q}$ and therefore $\mu_{p, q} \circ \tau_{p}=\mu_{p, q}$. It follows that $F_{p q}$ induces a quasiconformal homeomorphism $H_{p q}$ from $X(p) / \tau_{p}$ to $X(q) / \tau_{q}$ and that Beltrami differential varies holomorphically with q. If $\Phi(p)=(y(p), \pm \alpha(p))$ and $\Phi(q)=(y(q), \pm \alpha))$, the definitions imply $H_{p q}(y(p))=y(q)$, and therefore $y(q)$ varies holomorphically with q. It follows easily from the definition of Φ that $\pm \alpha(q)$ varies holomorphically with q.

In order to construct local right inverses fix $p=(P, v)$ with $\Phi(p)=(y, \pm \alpha(p))$, as above. Let $F: X(p) \rightarrow \mathbb{C} \cup\{\infty\}$ be the map (1.4) which is used in the definition of Φ. For $1 \leq j \leq n$ let γ_{j} be the segment of ∂P from $u_{j}(p)=\frac{1}{2}\left(v_{j}(p), v_{j-1}(p)\right)$ to $v_{j}(p)$. Also, let γ_{0} be a smooth path in P from 0 to $v_{0}=v$. Define $\delta_{j}=F\left(\gamma_{j}\right), 0 \leq j \leq n$. δ_{j} is a path from $y_{j}(p)$ to ∞. Choose a version of $\frac{d z}{w}=\eta$ such that $F^{*}(\alpha \eta)=\omega$, and declare η to have values on δ_{j} which are limits from the lefthand side of δ_{j}. We have

$$
\begin{align*}
v_{0}(p) & =2 \alpha \int_{\delta_{0}} \eta \tag{3.1}\\
v_{j}(p)-v_{j-1}(p) & =\int_{\delta_{j}} \eta .
\end{align*}
$$

As y varies in a small neighborhood of $y(p)$ it is possible to vary paths $\delta_{j}(y)$ (from y_{j} to ∞) and the definition of $\frac{d z}{w}=\eta_{y}$ in such a way that

$$
\begin{equation*}
\Psi(y, \beta)=\left\{2 \beta \int_{\delta_{j}(y)} \eta_{y}\right\}_{1 \leq j \leq n} \tag{3.2}
\end{equation*}
$$

is holomorphic in (y, β). We restrict the subscripts to $1 \leq j \leq n$ because the remaining integral is minus the sum of the other integrals. There are n integrals and n parameters (y, β). If (y, β) is sufficiently close to $(y(p), \alpha(p))$ then $\Psi(y, \beta)$ determines a symmetric polygon whose distinguished vertex is a function (negative sum) of the integrals (3.2). As Φ is continuous, the relation (3.1) implies Φ is locally biholomorphic as soon as Ψ has this property.

The Jacobian determinant of the map Ψ has been calculated in [4] in a more general
setting. One finds

$$
\begin{equation*}
\left(\operatorname{det} \frac{\partial \Psi}{\partial(\beta, y)}\right)^{2}=\left(\pi^{n+1} \Gamma^{2}\left(\frac{n-3}{2}\right) \beta^{n-1} \prod_{0 \leq k<l \leq n}\left(y_{k}-y_{l}\right)^{-1}\right)^{2} . \tag{3.3}
\end{equation*}
$$

It follows that Ψ is nowhere singular. Theorem 1.11 is thereby proved.

4. DYNAMICS OVER MODULI SPACE

Theorem 1.11 asserts that the map $\Phi: \mathcal{P}(n) \rightarrow \Omega_{n} \times \mathbb{C}^{*} / \pm 1$ is a surjective local biholomorphism. Let λ be the euclidean volume element on $\mathcal{P}(n)$. The determinant formula (3.3) suggests a prescription for a volume element ν on $\Omega_{n} \times C^{*} / \pm 1$

$$
\begin{equation*}
\nu=\left(\frac{i}{2}\right)^{n}|\beta|^{2 n-2} \prod_{0 \leq k<l \leq n}\left|y_{k}-y_{l}\right|(d \beta \wedge d \bar{\beta}) \bigwedge_{j=2}^{n} d y_{j} \wedge d \bar{y}_{j} \tag{4.1}
\end{equation*}
$$

There exists a constant $c(n)>0$ such that

$$
\begin{equation*}
\lambda=\Phi^{*}(c(n) \nu) . \tag{4.2}
\end{equation*}
$$

It follows that λ projects to a volume element on the equivalence relation determined by Φ.

If $p=(P, v) \in \mathcal{P}(n)$, we denote the area of P by $N(p)$. If $\Phi(p)=(y, \pm \alpha)$, then but for a dimensional constant

$$
\begin{equation*}
N(p)=\frac{i}{2} \int_{\mathbb{C}}|\alpha|^{2} \frac{d z \wedge d \bar{z}}{|w|^{2}} \tag{4.3}
\end{equation*}
$$

where $w^{2}=\prod_{j=0}^{n}\left(z-y_{j}\right)$. In what follows we take (4.3) for the definition of $N(P)$. Also, express the right-hand side of (4.3) as $|\alpha|^{2} M(y)$ so that

$$
N(p)=|\alpha|^{2} M(y)
$$

Set up the ($2 n-1$)-form (with $\alpha=|\alpha| e^{i \theta}$) $\tilde{\mu}$, where

$$
\tilde{\mu}=\frac{|\alpha|^{2 n-1}}{M(y)} \prod_{0 \leq k<l \leq n}\left|y_{j}-y_{l}\right|^{-2} \bigwedge_{j=2}^{n}\left(\frac{i}{2} d y_{j} \wedge d \bar{y}_{j}\right) \wedge d \theta
$$

and observe that, up to a scale factor, $d\left(|\alpha|^{2} M(y)\right) \wedge \tilde{\mu}=\nu$. The restriction of $\tilde{\mu}$ to the constant norm surface $|\alpha|^{2} M(y)=1$ is the form

$$
\begin{equation*}
\mu=\frac{d \theta \wedge \bigwedge_{j=2}^{n}\left(\frac{i}{2} d y_{j} \wedge d \bar{y}_{j}\right)}{M(y)^{n} \prod_{0 \leq k<l \leq n}\left|y_{k}-y_{l}\right|^{2}} . \tag{4.4}
\end{equation*}
$$

Recall from [4]: if $\Lambda_{n}=\left\{\left.(y, \pm \alpha)| | \alpha\right|^{2} M(y)=1\right\}$, then

$$
\begin{equation*}
\int_{\Lambda_{n}} \mu<\infty . \tag{4.5}
\end{equation*}
$$

Identify μ with the measure it defines on Λ_{n}.
For a moment we shall use G to denote the group $S U(1,1) \cong S L(2, \mathbb{R})$ of 2×2 complex matrices $A=\left(\begin{array}{cc}\xi & \bar{\eta} \\ \eta & \bar{\xi}\end{array}\right)$ such that $\operatorname{det} A=1 . G$ acts \mathbb{R}-linearly on \mathbb{C} by $A z=\xi z+\bar{\eta} \bar{z}$, and this induces an action of G on $\mathcal{P}(n)$, e.g. coordinatewise in (1.1). Denote this latter action by $p \rightarrow T_{A} p$.

If $p \in \mathcal{P}(n)$ and $A \in G$, then T_{A} induces a quasiconformal homeomorphism from $X(p)$ to $X\left(T_{A} p\right)$. As $A^{*} d z=\xi d z+\bar{\eta} d \bar{z}, A=\left(\begin{array}{cc}\xi & \bar{\eta} \\ \eta & \bar{\xi}\end{array}\right)$, the homeomorphism h_{A}, which is real analytic away from the vertex class(es); satisfies $h_{A}^{*} \omega_{T_{A} p}=\xi \omega_{p}+\bar{\eta} \bar{\omega}_{p}$.
Let $p_{1}, p_{2} \in \mathcal{P}(n)$ be such that $\Phi\left(p_{1}\right)=\Phi\left(p_{2}\right)$. The identity map on $\mathbb{C} \cup\{\infty\}$ lifts to a biholomorphism $\phi: X\left(p_{1}\right) \rightarrow X\left(p_{2}\right)$ such that $\phi^{*} \omega_{p_{2}}=\omega_{p_{1}}$ and ϕ preserves the ordering of the Weierstrass points. If $h_{A}^{j}: X\left(p_{j}\right) \rightarrow X\left(T_{A} p_{j}\right)$ are as above, the composition $\phi_{A}: X\left(T_{A} p_{1}\right) \rightarrow X\left(T_{A} p_{2}\right)$ where $\phi_{A}=h_{A}^{2} \circ \phi \circ\left(h_{A}^{1}\right)^{-1}$ satisfies $\phi_{A}^{*} \omega_{T_{A} p_{2}}=\omega_{T_{A} \dot{p}_{1}}$, and therefore $\Phi\left(T_{A} p_{1}\right)=\Phi\left(T_{A} p_{2}\right)$. The action of G on $\mathcal{P}(n)$ descends to an action on $\Omega_{n} \times \mathbb{C}^{*} / \pm 1$.

It is obvious from the definitions that the G-action preserves the volume element λ on $\mathcal{P}(n)$. As λ projects to the volume element $\nu((4.1))$, the action of G which is induced upon $\Omega_{n} \times \mathbb{C}^{*} / \pm 1$ by Φ must preserve ν. As $\operatorname{det} A=1, A \in G$, the G action preserves the area function $N(p)$. It follows from (4.3') and the definition (4.4) of the restriction volume from μ on Λ_{n} that μ is also G-invariant.
Theorem 4.6. The triple $\left(\Lambda_{n}, \mu, G\right)$ is a real analytic, ergodic, finite measure preserving action.

Proof. Finiteness has been noted above. $\left(\Lambda_{n}, G\right)$ is a component of a stratum, in the sense of [6], and ergodicity of topological components is established in [6].

5. CLOSED ORBIT AND CONVEXITY

Theorem 4.6 implies that almost every $u \in \Lambda_{n}$ has a dense G-orbit. We turn now to a discussion of behavior at the opposite extreme, points u such that $G u$ is closed.

Denote by $\Gamma(u)$ the isotropy group of $u \in \Lambda_{n}$. We recall that $\Gamma(u)$ enjoys three properties for all $u: 1 . \Gamma(u)$ is discrete. 2. $\Gamma(u)$ is not cocompact. 3. If $A \in \Gamma(u)$, then $\operatorname{tr}(A)$ is an algebraic integer. Generically, $\Gamma(u)$ is trivial. However, for a dense set of $u \Gamma(u)$ is a lattice. For example, by the Remark, p. 579 in [5] $\Gamma(u)$ is commensurable with $S L(2, \mathbb{Z})$ when $u=\Phi(p)$ is such that $H(p) \in \mathbb{C}^{*} \mathbb{Q}^{n}(H(\cdot)$ is defined in (1.1).) Consideration of the integrals (3.1)-(3.2) yields a corresponding criterion for $u=(y, \pm \alpha)$ which depends upon y and integrals of the 1 -form $\frac{d z}{w}, w^{2}=\prod_{j=0}^{n}\left(z-y_{j}\right)$.

In this section we shall make use of consequences of an isotropy group being a lattice to establish

Theorem 5.1. Let $X(p)$ be the Riemann surface of the equation $w^{2}=1-z^{2 g+1}$, and let ω_{g} be a lift to $X(g)$ of the 1 -form $\frac{d z}{w}$. The pair $\left(X(g), \omega_{g}\right)$ cannot be realized as ($\left.X(p), \omega_{p}\right)$ for any $p=(P, v) \in \mathcal{P}(2 g)$ such that P is a convex polygon.

For each n let $\mathcal{P}_{c}(n)$ be the set of $p=(P, v) \in \mathcal{P}(n)$ such that P is convex. Clearly, $G \mathcal{P}_{c}(n)=\mathcal{P}_{c}(n)$ and $\mathcal{P}_{c}(n)$ contains a nonempty open set. If $\Lambda_{n, c}=\Phi\left(\mathcal{P}_{c}(n)\right)$, then Theorem 4.6 implies $\Lambda_{n, c}$ is a dense set of full measure; indeed, its interior has this property.

Question 5.2. Let $\Lambda_{n, b}=\Lambda_{n} \backslash \Lambda_{n, c}$. If $n>3$, does there exist $u \in \Lambda_{n, b}$ such that $G u$ is not closed? If the answer is 'yes', does there exist $u \in \Lambda_{n, b}$ such that $G u$ is dense in $\Lambda_{n, b}$?

We shall now give the proof of Theorem 5.1. To begin let (X, ω) be a pair consisting of a closed Riemann surface X and a nontrivial holomorphic 1 -form ω. Let \mathcal{U} be the atlas on $X \backslash E, E=\omega^{-1} 0$, as in Section 2. Denote by $\operatorname{Aff}(\mathcal{U})$ the group of orientation preserving homeomorphism ϕ of X which are affine in \mathcal{U}-coordinates. $\mathcal{F}(\theta), \theta \in \mathbb{R}$, has the same meaning as in Section 2.

Let $\Gamma=\Gamma(\mathcal{U})$ be the image in G of $\operatorname{Aff}(\mathcal{U})$ under the map which assigns to $\phi \in \operatorname{Aff}(\mathcal{U})$ its derivative $D \phi$ in \mathcal{U}-coordinates. $\Gamma(\mathcal{U})$ enjoys the properties $1-3$ which were listed above for $\Gamma(u)([5])$.

If $\theta \in \mathbb{R}$, define $A(\theta) \subseteq \operatorname{Aff}(\mathcal{U})$ to be the set of ϕ such that $D \phi(\cos \theta, \sin \theta)=$ $(\cos \theta, \sin \theta)$. Notice that $A(\theta)$ is a subgroup and for each $\phi \in A(\theta) D \phi \in \Gamma(\mathcal{U})$ is unipotent.

Lemma 5.3. Assume $\Gamma(\mathcal{U})$ is a lattice. The following are equivalent:
(A) $\mathcal{F}(\theta)$ admits a saddle connection.
(B) $D A(\theta)$ is nontrivial.
(C) $\mathcal{F}(\theta)$ partitions $X \backslash E$ into cylinders of closed leaves.

A proof of the lemma may be found in [5].
Lemma 5.4. Let (X, ω) be such that $\Gamma(\mathcal{U})$ is a lattice with a single cusp. If $\theta_{1}, \theta_{2} \in \mathbb{R}$ are such that $\mathcal{F}\left(\theta_{j}\right)$ admits a saddle connection for $j=1,2$, there exists $\phi \in$ Aff (\mathcal{U}) such that $\phi \mathcal{F}\left(\theta_{1}\right)=\mathcal{F}\left(\theta_{2}\right)$ or $\mathcal{F}\left(-\theta_{2}\right)$.

Proof. The assumptions combine to imply $D A\left(\theta_{1}\right)$ and $D A\left(\theta_{2}\right)$ are conjugate in $\Gamma(\mathcal{U})$. Choose $\psi \in \operatorname{Aff}(\mathcal{U})$ such that $(D \psi)^{-1} D A\left(\theta_{2}\right)(D \psi)=D A\left(\theta_{1}\right)$. If $\psi \mathcal{F}\left(\theta_{1}\right) \stackrel{\text { def }}{=} \mathcal{F}(\theta)$ then θ is such that $D A(\theta)=D A\left(\theta_{2}\right)$, and this implies $\theta=\theta_{2}$ or $-\theta_{2}$ modulo 2π. That is, $\psi \mathcal{F}\left(\theta_{1}\right)=\mathcal{F}\left(\theta_{2}\right)$ or $\mathcal{F}\left(-\theta_{2}\right)$. The lemma is proved.

To apply the lemma let (X, ω) be such that $\Gamma(\mathcal{U})$ is a lattice with one cusp, and let $\theta_{0} \in \mathbb{R}$ be such that $\mathcal{F}\left(\theta_{0}\right)$ decomposes $X \backslash E$ into cylinders of closed leaves. Denote the maximal such cylinders by C_{1}, \cdots, C_{r}, and let their heights be denoted h_{1}, \cdots, h_{r}. Now suppose $\theta \in \mathbb{R}$ is such that $\mathcal{F}\left(\theta_{0}\right)$ admits a saddle connection. Lemma 5.4 implies that there exists $\phi \in \operatorname{Aff}(\mathcal{U})$ and a choice of \pm such that $\phi \mathcal{F}\left(\theta_{0}\right)=\mathcal{F}(\pm \theta)$. As $D \phi$ is a linear transformation, there exists $t>0$ such that the cylinder ϕC_{j} has height $t h_{j}, 1 \leq j \leq r$, relative to $\mathcal{F}(\theta)$.

Proof of Theorem 5.1. We take $(X, \omega)=\left(X_{g}, \omega_{g}\right), g>1$. It is proved in [5] that $\Gamma(\mathcal{U})$ is a $(2,2 g+1, \infty)$ triangle group and, in particular, $\Gamma(\mathcal{U})$ has only one cusp. In [5] it is shown that for one choice of $\theta \mathcal{F}(\theta)$ has exactly g maximal cylinders of closed leaves which, up to a common constant factor have lengths $h_{j}=\sin \left(\frac{2 j-1}{2 g+1} \pi\right), 1 \leq j \leq g$. If the cylinders are denoted C_{1}, \cdots, C_{g}, there are two additional facts to record for later reference. A. $\partial C_{1} \subseteq C_{2}, \partial C_{g} \subseteq C_{g-1}$ and $\partial C_{j} \subseteq C_{j-1} \cup C_{j+1}, 1<j<g$. B. If $1<j<g$,
then up to a common constant factor each side of C_{j} is comprised of a pair of saddle connections of lengths $\sin \frac{2 \pi j}{2 g+1}$ and $\sin \frac{2 \pi(j-1)}{2 g+1}$. We also record the elementary inequality

$$
\begin{equation*}
2 \sin \frac{2 \pi(j-1)}{2 g+1}>\sin \frac{2 \pi j}{2 g+1} \quad(2 \leq j \leq g) \tag{5.5}
\end{equation*}
$$

$\left(\sin \frac{2 \pi j}{2 g+1}<\sin \frac{2 \pi(j-1)}{2 g+1}+\sin \frac{2 \pi}{2 g+1} \leq \sin \frac{2 \pi(j-1)}{2 g+1}, 2 \leq j \leq g\right)$.
Now suppose $p=(P, v) \in \mathcal{P}(2 g)$ is such that P is convex and $\left(X(p), \omega_{p}\right)$ is isomorphic to $\left(X(g), \omega_{g}\right)$. We shall prove this leads to a contradiction. The vertices of P are ordered as $v=v_{0}, v_{1}, \cdots$ in the usual way.

Let l_{j} denote the oriented segment $\overrightarrow{v_{4 g-j} v_{j}}, 1 \leq j \leq 2 g$. We observe first that these segments cannot be pairwise parallel. For if they are, the foliation $\mathcal{F}(\theta)$, where θ is the common direction, has cylinders of lengths $\left\|l_{1}\right\|,\left\|l_{1}\right\|+\left\|l_{2}\right\|, \cdots,\left\|l_{g-1}\right\|+\left\|l_{g}\right\|$. Moreover, central symmetry and convexity imply $\left\|l_{1}\right\| \leq\left\|l_{2}\right\| \leq \cdots \leq\left\|l_{g}\right\|$. When $g=2$, one concludes that $h_{2}>2 h_{1}$, contradicting $h_{j}=\sin \left(\frac{2 j-1}{5} \pi\right), j=1,2$. When $g>2$, one concludes $h_{1}<h_{2}<\cdot<h_{g}$ contradicting $h_{j}=\sin \left(\frac{2 j-1}{2 g+1} \pi\right)$.

Let k be the first positive integer such that l_{k} is not parallel to l_{1}. The edges e_{1}, \cdots, e_{k-1} are cross-sections of cylinders D_{1}, \cdots, D_{k-1} of closed leaves, and these cylinders have on each side a pair of saddle connections of lengths l_{j} and $l_{j-1}, 1 \leq$ $j \leq k-1\left(l_{0}=0\right)$. Property B and the fact every leaf of $\mathcal{F}(\theta)$ has length at least $\left\|l_{1}\right\|$ imply $\left\|l_{j}\right\|=\sin \frac{2 \pi j}{2 g+1}, 1 \leq j<k$.

The left side of l_{k-1} is one of the saddle connections on the right hand side of D_{k}. Parallel segments from the vertices $v_{2 g+k}$ and $v_{2 g-k}$ do not coincide because, by assumption, l_{k} and l_{k-1} are not paralell. It follows that the length of the second saddle connection on the right side of D_{k} has length at least $2 l_{k-1}$. This implies $\sin \frac{2 \pi(k-1)}{2 g+1} \leq \sin \frac{2 \pi k}{2 g+1}$ contradicting (5.5). We have reached a contradiction, and Theorem 5.1 is proved.

Remark 5.6. It is not difficult to see that each $p \in \mathcal{P}(3)$ admits a convex equivalent. We believe that an argument similar to the one above will show that the curves $w^{2}=$ $1-z^{2 g+2}, g>1$ equipped with $\frac{d z}{w}$, do not admit convex representatives in $\mathcal{P}(2 g+1)$.

6. CHARACTERIZATION OF CLOSED ORBITS

For any $u \in \Lambda_{n}$ the canonical map $G / \Gamma(u) \rightarrow G u$ is continuous. Consideration of codimension three transversals to the G action shows that this map is a homeonorphism when $G u$ is closed in Λ_{n}.

Lemma 6.1. If $G u$ is closed, and if $\Gamma(u)$ is viewed as a Fuchsian group in the disc, the limit set of $\Gamma(u)$ is all of S^{1}.

Proof. Let K be the rotation subgroup of G, and let $g_{t}=\left(\begin{array}{cc}e^{t} & 0 \\ 0 & e^{-t}\end{array}\right), t \in \mathbb{R}$. According to [1] it is true for almost all $k \in K$ that the ω-limit set of $k u$ (in Λ_{n}) relative to $\left\{g_{t} \mid t \in \mathbb{R}\right\}$ is nonempty. For the disc picture this translates to the statement that for almost all k the geodesic from zero in direction k does not diverge to ∞ in $\Gamma \backslash \Delta, \Delta=$ disc. It follows in particular that $\Gamma(u)$ has no domain of discontinuity on S^{1}. That is, $\Gamma(u)$ has S^{1} for its limit set.

Proposition 6.2. If $G u$ is closed, and if $\Gamma(u)$ is finitely generated, then $\Gamma(u)$ is a lattice.

Proof. A finitely generated Fuchsian group with limit set S^{1} must be a lattice.
Question 6.3. If $u \in \Lambda_{n}$, is $\Gamma(u)$ finitely generated?
J.Smillie has observed that Proposition 6.2 is true without the assumption that $\Gamma(u)$ is finitely generated. Question 6.3 appears to be open.

We shall give an outline of a proof of Smillie's theorem (for the setting of $\left(\Lambda_{n}, G\right)$):

1. If ν_{n} is the probability measure on Λ_{n} which is the image of normalized Haar measure on K under $k \rightarrow k u$, the orbit $G \nu_{u}$ is relatively compact in the weak-* topology of probability measures on Λ_{n}. This is implicit in [1] and follows from its techniques.
2. If ν is a cluster point of $\left\{g_{t} \nu_{u} \mid t \rightarrow+\infty\right\}$, then ν is invariant under the group N of upper triangular unipotent matrices. This is also from [1].
3. Let $D=\left\{v \in \Lambda_{n} \mid \lim _{t \rightarrow \infty} g_{t} v=\infty\right\}$. The facts $G \nu_{u}$ is relatively compact in the space of probability measure and ν above is a cluster point imply $\nu(D)=0$. In particular, a.e. ergodic component ν_{e} of ν satisfies $\nu_{e}(D)=0$.
4. If ν_{e} is as in 3., then Ratner's Main Theorem [2] implies $G \nu_{e}=\nu_{e}$.

Step 4 establishes the fact that when $G u$ is closed, $G / \Gamma(u)$ supports a finite G invariant measure. Therefore, $\Gamma(u)$ is a lattice.

References

1. Kerckhoff,S., Masur H., Smille J., Ergodicity of billiard flows and quadratic differentials, Ann. of Math. 124(1986), 293-311.
2. Ratner, M., On Roghunathan's measure conjecture, Ann. of Math. 134 (1991), 545-607.
3. Strebel, K., Quadratic Differentials, Berlin-Heidelberg-New York, Springer 1984.
4. Veech, W.A., Flat Surfaces, Am. J. of Math. 115(1993), in press.
5. -, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Inv. Math. 97(1989), 553-583.
6. ——, The Teichmüller geodesic flow, Ann. of Math. 124(1986), 441-530.

INDEX

Associated (Krieger) flow, 2
Base transformation, 6
Billiard, bounded scattering, 169
Box dimension, 61
Chacon map, 108
Chain recurrent set, 65
Coalescence, 28
Cocycle, 1,27,104
Continued fraction, 180,188
Copying lemma, 18
Critical temperature, 61
Cylinder flow, 28,42
Density-wave instability, 147
Domain exchange transformation, 95
Equivalence,
Kakutani, even Kakutani, 193
α-equivalence, 194
Expansive map, 63
Fatou set, 108
Ford circle, 183
Fredholm matrix, 162
Geodesic, 182,219
Geodesic flow, 202
Height function, 6
Homogeneous Banach space, 35
Hopf equivalence, 7
Hyperelliptic curve, 217
Infra-nilmanifold, 64
Invariant factor, 2
Julia set, 118
Kneading map, 90
Kosma's inequality, 36
Lacunary cocycle, 7

Law of large number, 127
Legendre denominator, 36
Length spectrum, 169
Lobachevsky space, 203
Lyapunov exponent, 151

Markov partition, 212,171
Maximal oscillation, 89
Modified Jacobi-Perron algorithm, 95
Moduli space, 222
Möbius transformation, 204
Monodromy (of semi-conjugacy), 67
Nested fractal, 140
Normality of numbers, 51
Odometer, 32
Orbit cocycle, 4
Perron-Frobenius operator, 161
Piecewise linear transformation, formal, 167
Poisson law, 80
Postcritical set, 118
Preperiodic (strictly), 119
Pseudo orbit, 65
p-stream diffusion, 134

Rational measure, 105
Renewal equation, 163
Return time process, 80
Rigidity time, 30
Ruelle-Artin-Mazur zeta function, 83
Self-similar set, 117
Sierpinski gasket, 132,118
Signed symbolic dynamics, 164
Special flow representation, 6
Squashablility, 27
Strange attractor, 151
Type $\mathrm{III}_{\lambda}, 108$
Uniformly distributed, 211

[^0]: *Research supported by NSF.

