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 Annals of Mathematics, 115 (1982), 169-200

 Interval exchange transformations and
 measured foliations

 By HOWARD MASUR*

 0. Introduction

 In this paper we will use methods of Riemann surface theory, particularly

 that of Teichmdtller theory, to solve a problem in topological dynamics. We are

 interested in the piecewise order-preserving isometries of intervals on the real

 axis, the so-called interval exchange maps. An interval exchange preserves

 Lebesgue measure and its multiples on the interval. We prove, solving a

 conjecture of Keane's, that for "almost all" minimal interval exchange maps

 every invariant measure is a multiple of Lebesgue measure.

 Veech independently and with somewhat similar methods [18] has proved

 the same result.

 Thurston asked a similar question about measured foliations on a Ct

 surface. We prove that for "almost all" minimal measured foliations the

 transverse measure is determined up to scalar multiple by the topological

 structure of the foliation.

 In order to state these problems and results precisely, we begin with

 terminology and history of the problems. Given X E (X1, , , r) E A,, the cone
 of positive vectors in RT, set A) 0 f3i = and Xi = /3). Let T be a
 permutation of { 1, . . , n}. Set XT = (X T( 1)' . . .XTI(n) E A,. Form the corre-
 sponding 3Pi(XT) and XT. We define a map T from IA [0, f3n) to itself by

 Tx - x -i- , + P3T x E Xi, 1 ? i ? n.

 T maps X isometrically onto XTi ) and is called the (XA, T) interval exchange map.

 T is continuous except perhaps at { f3,... ., f3n -} and it is right continuous there.

 If T(i) + 1 = T(i + 1) for some i then T is continuous at Pi and is actually an
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 170 HOWARD MASUR

 interval exchange on fewer than n intervals. We therefore assume r(i) + 1 I
 T(i + 1) for all i.

 It is obvious from the definition that T preserves Lebesgue measure on

 [0, /3,). One says (S, T) is uniquely ergodic if every finite invariant measure is a
 multiple of Lebesgue measure.

 Recall that X is reducible if there exists i < n such that { , . . .,i} { 1, . .,i}.

 Otherwise T is irreducible. If X is reducible the IA decomposes into nonempty

 invariant subintervals and T cannot be uniquely ergodic. We therefore restrict

 ourselves to irreducible permutations.

 Keane [8] proved that if T is irreducible and the orbits of each /i are infinite
 and distinct then (. T) is minimal; every orbit is dense. In particular, when the
 components of A are rationally independent, T is minimal. For n = 2,3, minimal-

 ity implies unique ergodicity, as the problem reduces to studying rotations of a

 circle where the result is well-known.

 Contrary to a conjecture, Keynes and Newton [10], using work of Veech,

 produced a minimal nonuniquely ergodic (S, T) when n = 5 and later Keane [9]
 produced an example for n = 4 where the components are rationally indepen-

 dent.

 THEOREM 1. If T is irreducible and n ? 4 then for almost all X E A,, (with
 respect to Lebesgue measure on A,,) the (XA, T) interval exchange map is uniquely

 ergodic.

 This theorem solves a conjecture of Keane's [9]. (See also [15]). It was

 proved first for n = 4 by Veech [17] and, as mentioned above, for all n also by

 Veech independently.

 Our approach is to place the problem in the context of measured foliations

 on a CO surface M, as developed in [14], and holomorphic differential forms on

 closed Riemann surfaces. Thurston used measured foliations to, among other

 things, study diffeomorphisms of closed surfaces. These are foliations with
 prescribed kinds of singularities and an invariant transverse measure. The set of

 measure equivalence classes MF has a natural piecewise linear structure and if

 the surface has genus g ? 2, it is homeomorphic to R6g-6 - 0}. Measure
 equivalence can be thought of as the weakest equivalence generated by trans-
 verse measure preserving diffeomorphisms homotopic to the identity and

 Whitehead operations of collapsing saddle connections to higher order singulari-

 ties.

 The piecewise linear structure allows one to define a measure M on MF
 invariant under coordinate changes.
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 INTERVAL EXCHANGE TRANSFORMATIONS 171

 We define a weaker topological equivalence on measured foliations as that

 generated by diffeomorphisms homotopic to the identity and Whitehead opera-

 tions where the transverse measure need not be preserved. A measured foliation F

 is uniquely ergodic if any topologically equivalent foliation is measure equivalent

 to a multiple of F.

 THEOREM 2. Almost all (with respect to M) foliations in MF are uniquely

 ergodic.

 COROLLARY 1. Let X be a closed Riemann surface of genus g ? 2;
 H0(X, S2?2) the vector space of holomorphic quadratic differentials on X. Then

 for almost all q E Ht(X, Q?2), the horizontal and vertical foliations of q are

 uniquely ergodic measured foliations.

 There is clearly a relation between the two theorems. If F is an oriented

 minimal foliation then a transverse segment has a first return map which is an

 interval exchange. Roughly speaking, the lengths of the intervals are local

 coordinates in MF which define ft. Conversely an interval exchange can be
 suspended to produce an oriented foliation. "Most" foliations in MF are not

 oriented, so Theorem 2 is in some sense Theorem 1 in a special nonorientable

 case.

 Our final results concern a group action on a space of foliations. Let

 Mod(g) = Diff+M/Diff 0M, the mapping class group. It acts on MF by pull-back
 and therefore on MF X MF as well and preserves the measures t and I X t
 respectively. Let PF be the projective space of foliations defined by F1 - F2 if

 F1 = XF2. PF is the sphere S6g-7. A set E C PF has measure zero if the set of all
 its representatives has 1 measure zero in MF. Two sets define the same measure
 class if their symmetric difference has measure zero.

 Since Mod(g) is measure preserving on MF and MF X MF, Mod(g) is

 measure class preserving on PF and PF X PF.

 THEOREM 3. Mod(g) acts ergodically on PF X PF.

 COROLLARY 2. Mod(g) acts ergodically on PF.

 The idea behind the proofs of the first two theorems is to consider pairs of

 transverse measured foliations. A pair defines a holomorphic quadratic differen-

 tial on a compact Riemann surface. If the foliations come from interval exchange

 maps and thus are oriented, the quadratic differential is the square of an abelian

 differential and has zeroes of orders determined by the interval exchange. On the

 various spaces of quadratic differentials determined by the orders of their zeroes,

 we define a flow coming from the Teichmiller extremal maps and a measure
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 172 HOWARD MASUR

 invariant under both the flow and the action of Mod(g). The measures are

 natural in that a set of interval exchange maps of zero (resp. nonzero) measure

 gives rise to a set of differentials of zero (resp. nonzero) measure. The invariance

 under Mod(g) gives rise to a measure preserving flow on the quotients.

 We then prove these quotient measures are all finite. The last and main step

 is to show that there is a closed set of measure zero such that the positive orbit of

 any quadratic differential with a nonuniquely ergodic vertical foliation has Sl

 limit points in this set. We may then apply Poincare recurrence to show that the

 quadratic differentials in any one of these various spaces with nonuniquely

 ergodic vertical foliations have measure zero.

 We show that Theorem 3 is equivalent to showing the Teichmifiller flow on

 the quotient of the quadratic differentials by Mod(g) is ergodic. To prove that,

 we will be able to follow Hopf's proof [5] of ergodicity for a conservative

 geodesic flow on a surface of constant negative curvature almost line for line.

 In the first three sections we give the preliminaries on ergodic theory, the

 Teichmiiller flow and building measured foliations from interval exchanges.

 Sections 4 and 5 are devoted to building the measures with the required

 properties and showing that the quotient measures are finite. In Section 6 we

 consider orbits of quadratic differentials.

 We rely heavily on the theory of measured foliations as found in [14] and

 [6], on the former to build the measure and on the latter for the relationship

 between measured foliations and quadratic differentials. For the theory of
 Teichmiiller extremal maps and quadratic differentials we refer to [1], [2], or [3].

 References for the theory of the boundary of moduli space used in Section 5 can

 be found in [1] and [4].

 I would like to thank the referees for making several valuable suggestions;

 particularly, how to vastly improve Section 3.

 1. Convex sets of measures

 We record here the ergodic theory needed later. Let (X, T) be an interval

 exchange, T irreducible or F a measured foliation. Normalize Lebesgue measure

 so that the interval has unit length in the first case, or so that a transverse

 segment has unit length in the second. If (X, T) or F is not uniquely ergodic, the

 sets E(X, T) and L(F) of invariant normalized measures on the interval or

 foliation are a convex set of positive dimension. Katok [7] and also Veech [16]
 proved that dim E(X, T) n [2]. It is possible to prove by passing to a double

 cover of F and using the arguments of those papers that dim E( F) ' 3g-3 where
 M has genus g, although this will not be needed.
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 INTERVAL EXCHANGE TRANSFORMATIONS 173

 The extreme points of these convex sets are the ergodic measures and they

 are mutually singular. For v ergodic, the Birkhoff ergodic theorem says if

 f E L2[i],

 1 N
 lim - 2 f(Tn (x)) fd almost everywhere.

 N-oc N

 The points for which this holds are called generic points for f and P.

 If F is an ergodic foliation, then for any f which is L2 on a transversal J with

 transverse measure P, limN 11NEN__f(Tn(x)) = f1fd P for almost all leaves L.
 Here the T"(x) are the successive intersections of L with J.

 2. The Teichmuller flow and spaces of differentials

 We let Tg be the Teichmiiller space of closed Riemann surfaces of genus

 g ?-2, Q -{O} Tg the bundle of nonzero holomorphic quadratic differentials.
 The unit sub-bundle Q0 C Q - {O} is defined by the norm, 11 q II = fv I q I . For
 any q E Q and t E R, q is the initial quadratic differential of the Teichmiiller
 extremal map with dilatation

 kq I +k 2t

 Denote by q, the terminal quadratic differential satisfying II q, 11 = II q I1. The map

 q -qt

 defines a flow on Q - { 0) called the Teichmiller flow. It is clearly also defined

 on Q0. It is invariant under the action of Mod(g) on Q0 and therefore defines a
 flow on Q9/Mod(g).

 For any g ? 2 let k = (k1,. . . ,k P) satisfy
 i) each ki is a positive even integer,
 ii) - 1ki - 4g4.

 Define Qk C Q and Qk C Q0 to be the set of q or normalized q such that
 i) q is the square of an abelian differential;

 ii) the distinct zeroes of q have orders kiI
 The initial differential belongs to Qk if and only if the terminal differential

 does, so the Teichmifiller flow is defined on each Qk/Mod(g).

 2.2. Suppose q is a nonzero quadratic differential on a compact surface of

 genus - 2. Then Im q' /2dz and Re q /2dz define two transverse measured
 foliations denoted Fq and F -q; Fq is the horizontal foliation, and F-q the vertical.

 The measures are respectively, I Im q 1/2 dz I and I Re q 1/2 dz I .
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 174 HOWARD MASUR

 Conversely, suppose F1 and F2 are transverse foliations. This means their

 singularities coincide and are the same order, and elsewhere they are transverse

 in the usual sense. Together they define a complex structure X on M and a

 quadratic differential q such that Fq = F1, Fq F2. We will write

 q = (F1, F2) = (Fq, F-q).

 For any F1 the set of transverse F2 has nonempty interior in MF, [12]. Since

 scalar multiplication of measures does not affect transversality, to any set E of

 measured foliations, let

 p(E) ={q E Q. such that Fq c E}.

 We may describe the Teichmiiller flow in this context by t, q = t, (F1, F2)

 (e-'F,, etF2) = q, since the Teichmiiller map multiplies the distance between
 vertical leaves by et (expands on horizontal leaves) and multiplies the distance

 between horizontal leaves by eat.

 3.

 We need to show in this section that we can associate to each interval

 exchange (A, T), T irreducible, a holomorphic 1-form (TA, ) such that the

 foliation of Re w defines (A, T) as Poincare or first return map on some transverse

 interval. The quadratic form W2 lies in some Qk/Mod(g) where k depends only
 on T. There is no canonical way of determining a marking on the underlying

 Riemann surface explaining why the quotient by Mod(g) is necessary.

 Given A, T, define points Vj ,1 j < n, by

 i i

 Vi+ lpi + Hi IE (71 -l1); Vj = A(AT) - l_ 1E ( - 1)

 The irreducibility of T (and '1) implies ImV,+ > 0, ImVX- < 0, 1 < n. Also
 define

 V? =O fl 13=Anfl (n(

 Let P( A, T) be the polygon whose sides are the segments S.= Vjt1V

 1 ?j ? n. It is easy to check that S5+ and S-j are parallel and of the same length.

 Gluing them by parallel translation for 1 ? j ?' n yields a holomorphic 1-form
 W(A, ) on a Riemann surface AM(A, T). The corresponding vertical foliation given

 by Re w has first return (A, T) on [O, In) C M(A, T). We may now let A vary.
 The vertices V+, 1 j< n are identified in even numbers 2m. Since from

 each such vertex a vertical line emanates, if m - 2 this identified vertex is a zero

 of order 2m-2 of w2. It is possible for m 1, so only two among these are
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 INTERVAL EXCHANGE TRANSFORMATIONS 175

 identified. Since T(j + 1) =# T(j) + 1, this means this pair of vertices is also
 identified with 0 or f3n or both and the identified point is not a zero of C. Below

 we list these possibilities, for some 1 < j < n,

 T(j)= n

 (3.1) T(j + 1) =1

 T(1) f(n) + 1;

 for some 1 < n,

 (3.2) T(j + 1) =1
 T(1) = T(j) + 1;

 for some 1 < <n,

 T(j + 1) T(fn) + 1
 (3.3) T(j) n.

 If 3.2 holds, 0, Vj+, and V7s) are identified and are not a zero. If 3.3 holds, the

 same is true of V, , V'4,), and /3n and if 3.1 holds it is true of V+, VX%, 0, and /,
 Note, if none of these hold, both 0 and /n become zeroes under the identifica-

 tions.

 Clearly the genus of the surface and the orders kl,...,kp of the zeroes
 depend only on T and not on X. We summarize our construction as:

 PROPOSITION 3.1. For each (X, T) there is a canonical holomorphic abelian

 differential CO(X, T) C Qk/Mod(g) such that Re X defines (X, T) on some trans-
 verse interval where k = (kl,...,kp) depends only on T. If T does not satisfy any

 of 3.1-3.3, then n = EtP (kj/2 + 1) + 1. Otherwise n > EP' (k1/2 + 1) + 1.

 Proof Only the last two statements need be checked. If none of 3.1-3.3 are

 satisfied, all VJ, 1 < j < n, are zeroes and they are identified in even numbers

 2m to a zero of order k1 - 2m-2. The total number is 2n-2 so 2n-2 -

 E(ki + 2) giving the first statement. In the second case, n is the same but now
 there are fewer zeroes so the inequality results.

 LEMMA 3.2. Suppose T satisfies any one of 3.1-3.3. Then there is a

 subinterval J of [0, /), so the induced first return on J has fewer than n
 intervals.

 Remark. This lemma was proved first in [16].

 Proof. Suppose 3.1 holds. Consider the subinterval J [ /3l - ) The

 leaves of Recw leaving PI and /n3- in the positive direction each encounters a
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 176 HOWARD MASUR

 zero before returning to I = [Po, P/) and therefore also to J. We can therefore
 form a new segment I' transverse to Re X with these zeroes as endpoints such

 that the interval exchanges induced by Re w on J and J' are the same. The

 interval exchange on J' cannot satisfy any of 3.1-3.3 since its endpoints are
 singularities. By Proposition 3.1, 1' and therefore J have less than n intervals. If

 3.2 holds but not 3.3, let I= [PI, & ), and if 3.3 holds but not 3.2, let
 J = [b fn-1) If 3.2 and 3.3 both hold, let J I [/31, I~n---2), finishing the proof.

 Fix T irreducible. For any set E C An let p(E) { co2 E Qk such that Re w

 has a transverse interval with corresponding interval exchange in E with
 given T}.

 The point of our construction in this section is that p(E) # 0. In fact, as

 we shall see, for each (X, T) there are families of co inducing (X, r) other than the

 canonical Co(X, T).

 4. Measures on QO and Qo

 Recall from Part 2.2 and Section 3 that to any set E in MF or set E of (X, T),

 we have associated a set p(E) E QO or p(E) E Q0' such that the vertical foliation
 of any q E p(E) is in E.

 The object of this section is to prove

 PROPOSITION 4.1. There exist measures p on MF, Po on QO, and Ilk on0
 such that

 i) [t and Pk are invariant under the Teichmiller flow.
 ii) Po and Pk are Mod(g) invariant.
 iii) (E) - 0 if and only if po(p(E)) = 0.
 iv) If X does not satisfy 3.1-3.3, and E C A' is a set of X of zero (resp.

 nonzero) Lebesgue measure, then Pk(p(E)) = 0, (resp.> 0). If T satisfies one of
 3.1-3.3, and E has nonzero measure, Ik(p(E)) > 0.

 4.1. It seems difficult to describe measures on Q0 and Qk intrinsically.
 Rather we have to use the linear structure of MF to build these measures piece

 by piece. We need to recall some definitions and results from [14].

 A set Y1,... y3g-3 of simple closed curves on M is admissible if

 i) yq n jy 0, i ij,
 ii) yi is not homotopic to zero,

 iii) yi is not homotopic to y,, i # j.
 The set of yi bound 2g-2, three holed spheres, "pairs of pants". We further
 require

 iv) no yi occurs twice on the boundary of any pair of pants.
 Any measured foliation F can be put in normal position, with respect to

 {yi)}. This means there is F' measure equivalent to F and yi' homotopic to yi, the
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 INTERVAL EXCHANGE TRANSFORMATIONS 177

 (yi'} still satisfying (i)-(iv), such that each yi' is either transverse to F' or a closed
 leaf possibly passing through singularities of F'.

 Denote by F(-y) the transverse length of any curve y closed or not. We are

 interested in the case when all yi' are transverse. There are three possible cases
 for each pair of pants.

 X2

 X 2

 I occurs when the length of each y' is less than the sum of the other two. The xi
 are lengths between the critical points and satisfy

 x1 + X3 x1F(yi), Xi + X2 =xF()' X2 + x3 F(yk)
 II occurs when one curve is longer than the sum of the other two (three

 possibilities). Here we have

 F(y') xl + 2X2 + X3, F(y/) = XI, F(yf) =X3
 III is a limiting case of I and II where one length is the sum of the other two.

 Here

 F -y') = l+ 2 F(-y. ) = XI, F(-y') =x, and X3 0.
 In all cases, the pair of pants has two singularities in its interior, in the last

 case a saddle connection joining them.

 Canonically choose a singularity in each pair of pants. Enlarge each yi' to an

 annulus and choose a pair of curves ai and Pi that cross the annulus joining the
 singularities in the two pairs of pants and differ by a twist about -y'.

 An X~~
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 178 HOWARD MASUR

 The curves ai and Pi can always be chosen so that they are either transverse to F'
 or saddle connections. Let si and ti be the lengths of ai and Pi. Then among the
 three numbers F(yi'), si, ti, one is always the sum of the other two. Following the

 notation of [14, p. 102], whenever a triple (kI, k2, k3) is such that one number is
 the sum of the other two, we say they are in 6 (< V). We say a pair of pants is

 in 6 (< V) if Case III holds above. The foliation F is completely determined by

 the 3g-3 triples {F(yi'), si, ti} in 6 (< V).
 There is a double cover MF of M ramified over the singularities with

 canonical projection II such that FI*F is given by a closed 1-form (PF. Let a:

 MF -* MF be the canonical involution. The homology of M, odd with rest ct to
 a, is generated by the lifts of curves joining the singularities, and is a free abelian
 group of rank 6g-6.

 Suppose U C MF is a set of foliations with the property that all yi are
 transverse for any F E U and if F1, F2 E U and D is any pair of pants with

 respect to t y }, then D is either of Case I for both F1 and F2 or Case II for both.
 We say U is of constant type. MF is a disjoint union of such U together with

 lower dimensional sets where some yi is a leaf or some pair of pants is in
 6(< V).

 In any such U we may identify all odd homology groups H1(MiF, Z)- and
 choose the cF in a continuous way giving rise via the 1-form PF to a homomor-
 phism

 TF: HI(AF, Z) R.

 Define a 1-1 map U -* Hom(HI(fMF, Z) -- R) by

 F --TF '

 Let a1,. a6g-6 be a basis for H1(M, Z)- . For any set A C U, set i(A) =
 Lebesgue measure of {TF(al),. . I PF(a6g6)} C R6g-6; F E A. We define f to be
 zero on the complement of the sets U and thus f is defined on MF.

 LEMMA 4.2. f is well-defined.

 Proof. On any U, if PI, .,6g-6 also generate H1(M, Z) -{i)} and t a i} are
 defined in terms of each other by integer valued matrices which are inverses of

 each other. They therefore have determinant either 1 or - 1.

 But a matrix of determinant ?1 transforming the TF(ai) to the q)F(Pi) is
 measure preserving.

 LEMMA 4.3. p is preserved by Mod(g).
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 INTERVAL EXCHANGE TRANSFORMATIONS 179

 Let f E Mod( g). First note the image under f of a set of foliations for which

 F(yi) - 0, some i or a set for which some pair of pants is in 6 (< v) again has
 measure zero because the image is defined locally by a set of equations.

 Consider next f(Ul) n U2 where U1 and U2 have constant type. Let

 al,... ,g- be a homology basis defined by U1 and #j,... ,,8g-_, defined by U2.
 The map f' lifts to f'l on the double covers, f* '(/i) = Ej3a i a where
 det(a ) ?1 . Then

 3g-3

 (Fi)(i) =TF f* ((i)) = aaa ) = E aijqF(aj)
 i=1

 and once again the TF( ad), qp( F)( 1iA) are related by a measure preserving
 transformation.

 Define p X p to be the measure of MF X MF and the induced measure on
 Q - {O} C MF X MF. We define a measure oon Q0 by

 lo(E) = p X p q ? < A < 1, q E El.
 Since Mod(g) preserves ,i X ,X and is norm preserving as well, Mod(g) preserves

 Ho. This proves (ii) of Proposition 4.1.

 LEMMA 4.4. The Teichmuller flow on QO preserves /.

 Proof. The flow (Fq, F-q), t (e-tF,, etF(q) multiplies all lengths in the
 first factor by e-', all lengths in the second by et. It therefore preserves tt X tt
 and since it is also norm preserving the lemma is proved, giving (i) of Proposition

 4.1. Finally since every foliation has a set of transverse foliations of positive

 measure, (iii) follows.

 4.2. We would like to make a similar construction for Qk. The situation

 however is more complicated as the set of orientable foliations in MF is horribly

 complicated. Instead we by-pass MF and work with Qk directly. The advantage is

 that Qk is given locally by a set of equations. The measure then will be Lebesgue

 measure induced by local coordinates.

 Recall first [6, p. 231] that a closed curve y: S' -- M is quasitransverse for F
 if at every point t E S' either y( t) is a singularity or y is transversal to F near t or

 an inclusion in a leaf. If y(t) is a singularity at least one open sector on each side

 separates the incoming and outgoing parts of the curve.

 Suppose now qo =a2 Qk and {f y } is an admissible system. With respect
 to the foliation F Im ao, each yj can be represented by either a transverse or
 quasitransverse curve. The y1 may intersect at a singularity, even themselves, but
 may not cross. We would like to write equations for Im X, w2 near 2,. Assume no
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 180 HOWARD MASUR

 Yi contains a saddle connection other than the multiple zeroes. As before, this

 only assumes co' does not lie on a low dimensional set in Qk. Then if yj is
 transverse (resp. quasitransverse), for Impco, the same yj is transverse (resp.
 quasitransverse) for Imwo, nearby. In particular it enters and leaves the same
 sectors at the zeroes.

 We may take a foliation equivalent to Fq obtained by expanding multiple

 zeroes to saddle connections so that the quasitransverse curves are now trans-

 verse. This produces a set of equations in Fq((yi) and si. Some pairs of pants
 might be in 6 (< V) producing equations. Other equations come from the above

 procedure. If yj is quasitransverse to begin with, some equation in si, and
 possibly other variables, will hold. If yj is transverse to begin with, there will be

 no equations in si as there is generically no saddle connection across yi. We
 illustrate with the example below. The equation satisfied is s= s,.

 The same set of equations must hold for Im w near Im ao,. We can obviously do

 the same for Re coo. Now pick a maximum set of independent variables (Fq( yi), si
 F-q( Yk), s) for these two sets of equations. There can be no other defining

 equation for Qk near qo, for we can vary these independent variables in
 arbitrarily small amounts and still get transverse foliations defining a point in Qk.
 They form local coordinates and any other length between zeroes is a linear

 combination of these. We emphasize that if yj is transverse for Im wo, si is a
 local coordinate. The difficulty with defining a measure in terms of these
 coordinates is that (ii) of Proposition 4.1 might not be satisfied. We therefore
 have to choose carefully the admissible system.

 4.3. Given qo c Qk say an admissible system { y } is canonical for Im co if
 there exist neighborhoods U of qo in Qk and U' of Im co in MF such that
 {ImW,o2 C U) u' n0 {Fleach pair of pants is in 6 (< V) and Si = niF(yi)
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 INTERVAL EXCHANGE TRANSFORMATIONS 181

 for n1 E Z and r = EP(k i/2 - 1) values of i}. Note that if a pair of pants is in 6
 (< V), it contains a multiple zero.

 Similarly we may define { /Pi } canonical for Re coo. These will, in general, not
 be the same set. Before proving these curves exist we will use them to define the
 measure and show (i), (ii), (iv) hold.

 Since all pairs of pants are in 8 (< v) it is easy to see there are g "free"

 values for the lengths of yi. For local coordinates near qo we take g "free" Fq,(yi)
 and g "free" F-q(/3i) and 3g-3 - EP 1(ki/2 - 1) remaining si and 3g-3 -
 EP_1(ki/2 - 1) remaining s' not defined by s= nifFq( Y)S n; 'F-q(/3j). We
 define the measure on U as Lebesgue measure on f4g--r x i4g-3r induced by

 local coordinates, and then a measure kon Qok as before.

 PROPOSITION 4.4. Ilk is well-defined and satisfies (i), (ii) and (iv) of Proposi-
 tion 4. 1.

 Proof. The proof if it is well-defined depends on the fact that all other
 transverse lengths between zeroes are integral linear combinations of these
 coordinates. When all pairs of pants are in 6 (< V), all lengths are integral linear
 combinations of si, F(-yi) and in turn, any F(yi) can be expressed as an integral
 linear combination of the "free" F(yi). Now if { a, } is any other canonical system
 for Im con, we may express the coordinates of this system by an integer valued
 matrix of the others and vice versa. As in Lemma 4.3, this is measure preserving.
 The same holds for Re wo.

 Property (i) is the same as above. To prove (ii), notice that if (Yi } is
 canonical, then the condition si ni F(-yi) holds if and only if there is a saddle

 connection joining the two zeroes across yi. Then { f(yi ) } is canonical for Ff(q)i If

 a' is the curve across f(-yi) defining s' then f- '(a') crosses yi, joining the
 singularities in the two pairs of pants. Thereforef '(a') - a is homologous to a
 sum of the boundary cycles of the two pairs of pants, where a i defines si. Recall
 that the length of a transverse curve is the absolute value of the integral of the
 1-form defining the foliation. Therefore

 Ff(q)( a') Fq(f-'(a;))- ?s+ E?nFq(y)
 where the sum is over the boundary curves and n E Z. The ? depends on the
 situation. The matrix for f is therefore

 Lo J;
 where I is the g X g identity matrix and I is a 3g-3-r X 3g-3-r diagonal matrix
 with ?-1 as the entries on the diagonal. The matrix has determinant ? 1. Once
 again f preserves 1uk since obviously the same can be done for Re w.
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 182 HOWARD MASUR

 For property (iv), first note that if X does not satisfy any of 3.1-3.3, each Xi
 is a transverse length between zeroes for Re c. By Proposition 3.1 the number of

 intervals n = IP 1(ki/2 + 1) + 1 where EP 1ki/2-2g-2. We have n 4g-3-
 EF 1(ki/2 - 1) = dim.ReQk. Thus the independent lengths Xi, i 1,..., n,
 must form local coordinates for Re Qk (not necessarily the coordinates of a

 canonical system). The coordinates of a canonical system for Re x are linear

 combinations of these, and therefore sets of zero and nonzero measure are sent to

 sets of zero and nonzero measure in the coordinates (F q(y1) s'). By Fubini, the
 same is true in Qk and therefore Qk.

 If T satisfies 3.1, for example, and E is a set of X's of nonzero measure, then

 the measure of

 {(X2,...,Xn-1) I there exists Xl, Xn so that X E E}

 is also nonzero by Fubini. The set { X 2-..., -} are local coordinates for Qk and
 we proceed as above. The other possibilities for T are similar. This completes the
 proof of Proposition 4.1.

 COROLLARY. If Theorem 1 holds for m < n, it holds for T satisfying 3.1, 3.2

 or 3.3.

 Proof If there were a set of (X, A) of nonzero measure which were not

 uniquely ergodic, by (iv) of Proposition 4.1 there would be a set of quadratic
 differentials on Qk with nonuniquely ergodic vertical foliations of positive

 measure. Again by (iv) and Lemma 3.2 there would be a corresponding set of

 exchange maps on fewer than n intervals, contradicting the hypothesis.

 4.4. We proceed now to show canonical curves exist for any q0 c Qk. We
 will show it for Im a,. Again referring to [6], we say y(t) is increasing if

 Im o(y'(t)) > 0. In particular, y(t) is transverse to the foliation. We say x leads

 to y if there is an increasing curve from x to y.

 LEMMA 4.5. There are pairwise disjoint simple closed transverse curves

 Y1, .. ,Y such that every saddle connection of Im at (other than multiple zeroes)
 is cut by a Yi.

 Proof: Begin by taking a saddle connection and points x and y on opposite

 sides so x leads to y across the connection. By [6, Prop. 2.2] every point leads to

 every other so y leads to x. Together the two curves form a transverse simple

 closed curve. If there is a second saddle connection, repeat the procedure. The

 new curve may intersect the first one, but by a simple connecting disconnecting

 trick as in Figure 4 of [6], we get a simple curve intersecting both. We continue
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 in this manner until all saddle connections are crossed. By Proposition 2.5 of [6],

 two curves not intersecting the same saddle connections cannot be homotopic.

 Now cut M along these transverse curves. The complement has no saddle

 connections and it has a transverse boundary.

 LEMMA 4.6. There are disjoint transverse curves Yl+,.... y such that the

 complement of y1 U ... Uy, are spheres with holes, each containing only one
 (multiple) zero.

 Proof In each component U of M - { yl,... , y,}, every noncritical point
 leads to every other. For just as in [6], the set of points where a given point leads

 is an open subset of U whose boundary is contained in the union of the boundary

 of U, closed leaves of F, or saddle connections. There are no saddle connections,
 hence no closed leaves and the open set must coincide with U. Notice that if a

 leaf intersects a boundary component it leads to points on both sides so the leaf is

 not in the boundary of the open set.

 By the same argument, as in Proposition 2.6 [6], in each component the

 transverse curves generate homology with real coefficients so we may continue to

 find transverse curves until every component is a sphere with holes. If a

 component contains two distinct zeroes join them by a transverse curve /3. This

 can be done by taking a sector for each, for one of which a curve leaving the zero

 is increasing, the other decreasing, and then joining a point in each sector and

 then the two points to the zeroes. Now take x and y on opposite sides of /3 where

 x leads to y across /3. Join y to x by an increasing curve. The latter segment may
 also intersect /3, but as the figure shows, we may always find a simple transverse
 curve intersecting / only once.

 The transverse curve is dividing since the component is a sphere and the zeroes

 lie in different components because /P crosses only once. Continuing this process
 proves the lemma.

 LEMMA 4.7. Canonical curves exist.

 By the last lemma, every component is now a sphere with only one multiple

 zero. If a zero is double, the component is a pair of pants and we may ignore it.
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 184 HOWARD MASUR

 Suppose now a component has a zero of order k ? 4. Pick two sectors separated
 by exactly two others. For one sector, curves leaving will be increasing, the other
 decreasing. We may again find a quasitransverse curve y joining the zero to itself
 at those sectors. We find an equivalent foliation by expanding the zero so that
 this curve is now transverse. The curve separates a zero of order 2 from a zero of
 order k - 2.

 \~~~~~ /

 We continue in this way until all zeroes are of order 2. Then every pair of pants
 is in 8 (< V ) since the two zeroes inside coalesce to a zero of order 2. Moreover,
 every time the last step is performed, we get a saddle connection crossing the

 curve yi and no other. This gives si - ni Fq (yi) and this happens k i/2 - 1 times
 for each zero of order k . This constructs a set of curves for Im coo and as
 remarked before, the same set of equations holds in a neighborhood, proving the
 lemma.

 5. The quotient measures po(Qo/Mod(g)) and Mk(Qo/Mod(g)) are finite.

 The essential fact used in this section is that Tg/Mod(g) can be compacti-

 fied by adding Riemann surfaces with nodes, and Qo/Mod(g) and Qo/Mod(g)
 can be compactified by adding differentials with unit norm on the surfaces with

 nodes, and also adding the zero differentials. The former are allowed simple poles

 at the nodes and only occur in the case of QO - Q.
 Let Tg be the union of Tg and its boundary spaces, Tg/Mod( g), the

 compactified moduli space. Let X E Tg/Mod(g) be a Riemann surface with
 nodes pinched along Yl,,.. yv , completed to a set 1,... I3g-3, admissible except
 that possibly (iv) in the definition of admissible is not satisfied. That possibility
 will not be important in the sequel. Let HI0 and Hk denote the canonical

 projections of QO/Mod(g) and Qk/Mod(g) to Tg/Mod(g).
 Let Ul,..., UQ,, be a finite covering of Tg/Mod(g) by sufficiently small sets;

 this too is explained shortly. To show that the measures are finite we show

 PROPOSITION 5.1. [0(TI0(Ui) < , Mk(1k(Ui)) < cxz
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 The computations will be carried out in certain parametrized neighborhoods

 Ui of X. The union of these covers the compact boundary and we can pass to a
 subcover. This parametrization was found by Earle and Marden [4] and was used

 previously in [11]. In the latter paper we parametrized the space of quadratic

 differentials over this neighborhood of X. We reproduce that description here.

 Let Y - Tg-Tg be a marked boundary surface representing X; let Ui, Vi be

 neighborhoods of the ith node parametrized by I zi I < 1 and I wi I < 1 so that the
 node is wi = 0 = zi. Pick the neighborhoods of different nodes to be disjoint.
 Further, choose an open set W C Y disjoint from all Ui, Vi and a basis vl,..., P3g3p

 of Beltrami differentials supported in W for the tangent space to Tg- Tg at Y.
 For any tl,...,t, r1,..., T 3g-3-p in a neighborhood V of (0,0) E Cp X C3g-3-P, we
 get a Riemann surface Yt, by putting the complex structure E?t_-3 v1 on W.

 removing the discs 0 z zi ? ti I and 0 wi w- I ti I and gluing zi to tiwi . Let
 at, be the curve IZi I-wIiIIt 11/2

 The marking on Y determines a marking on Yt T up to a product of Dehn
 twists gi about at. Therefore V parametrizes a cover of a neighborhood U of X.
 We will show the measures are finite in V. That will show they are finite in U.

 In Section 5 of [11], we showed there exists a basis q1,. ..,qP, qp+l,...,q3g3
 for the quadratic differentials on Yt Tsuch that

 i[(dz2 T w,) + jg i(t, T, Zi + W,)w | 2

 ii) qdZ2 i(t, T. Zi + Wj) gii(t, T, Z1 + Wj)w | 2

 ,p2+ I, ,3g-3,

 where fj, gii are holomorphic in (t, T) near (0,0) and in z, + w, in A. =
 {zj I I tj I< 1 zi < 1}. For any set J C {l,...,p}, the set qi, qp+?1,.q3g-3 X J,
 forms a basis for the integrable quadratic differentials on Y1 T; tk= 0, k E J. For
 the rest of this section C denotes any constant not depending on t, T, z, iv, W.

 Normalize q1, i 1,... ,p, so that qi E QO Since f, and g1, are bounded, and

 (5.1) 1 dxdy= -27log tj1 and

 j 1 dxdy<C f i2 I d 12 AZji AZ1
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 the normalized qj is given on Ap,

 (5.2) qjdz2 B' i +k+ w- g + 1'2 271og It.I Z2 Z i ~ 2J
 where I Bij I is bounded above and below.

 LEMMA 5.1. Let q c v3g-13Cjqj and q E Qu. Ten ci is bounded.

 Proof. Passing to a subsequence if necessary, assume c, unbounded and cilc,
 bounded for all i as tk O 0 for one or more tk. There are two cases. If j > p + 1,

 or j < p and I tj I is bounded away from zero, then q c, converges to zero since
 any sequence in Q0 has a convergent subsequence. But q c, I i iciIC qj + qj.
 By 5.2, qk -' 0 for any k such that tk 0. Thus, the assumptions on cilcd, and j
 imply a subsequence of Ec1 ciqi + q, converges to a nonzero linear combination
 of basis elements on yt , tk 0. This contradicts qc, -*O. If i ' p and t, -O,
 let B, C A, be the annulus I t, 12/3 'I ZI 1<I ti 11/3. Then from 5.1 and 5.2,

 IYT T B B2 I X I C I 1) IC I
 where M is positive and bounded away from zero. The point is that the integral

 of j qj I over B, has a positive lower bound but the integral of j qI I over B, goes to
 zero, i # j. This is a contradiction.

 COROLLARY. For any q E Q, 11 q II ? 1 lying over V,

 (5.3) qdz2= + - +

 where

 (5.4) -a, jlogI tj? C, I I.< C, Ig I?C C.

 LEMMA 5.2. For any q with 1q 11 < 1, let s, s' be the s " coordinates for y,

 with respect to F, and F-,. Then

 Sis'f< - C Ia, 11l/2 log Iti, I PI)

 si,<1' i p +p1.

 Proof. For j?p + 1, y, is not pinched. Since any sequence has a conver-

 gent subsequence, the sp, s' lengths are bounded. For / ? p let /, be a curve
 crossing y, twice and no other y,, and a a radius of Ai. The j q 11/2 length of /, is
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 bounded by twice the length of a plus a uniform constant. We have

 jlr Ilazls j la, 2f -t-Jl I z j I zj f3 2) Id3 I

 =-la i 1/210g Iti I +C.

 However s. and s' are bounded by the I q 11/2 length of f, since a geodesic in the
 Iq 11/2 metric is quasitransverse for both the horizontal and vertical foliations.
 This lemma indicates that from the point of view of showing the measure is finite

 we need only deal with - a, 1/ 2log I ti I 1. We will show this later.

 LEMMA 5.3. Suppose -I a, 11/2log I ti 1_1. Then eOq has closed horizontal
 trajectories in the homotopy class of yj for some 0 and sufficiently small ti.

 Proof Let C, be the annulus 1 1 2 C z1 ? 1/(log t, )3* Write qdz=
 a /Z 2(1 + f+ z Jla , + g wai ) dz 2. On C,,

 (5.5) a, aj (log I til)3 logj tf
 and

 (5.6) g w, Ct1 c~ t < V C I t2 1/2log I ti I
 a, I i a

 by 5.4. Each of these terms is small for I tj I small.

 Let xi = zil ti 11/2 and D, be the annulus

 1 ?Kt1< ? 2 I X j I _3

 We have

 qdx ih1(x)dxj 2 1+ +ax dt 2]?

 By 5.5, h h- 1? -C(log tj )' so h, has a square root in D, and the Laurent
 expansion of h' /2 has constant coefficient C0 satisfying C C0- I ?<

 -C(logI t, )-.Let
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 The coefficient of 1 Ix in the integrand is 1 so Dj is well-defined, and can be
 made arbitrarily close to x; on fixed compact sets by taking t, small. It is therefore
 univalent on this compact set and the image of D, in the Dj plane contains circles.
 We have

 C( a. d = aoh.(x)dx q(x1)dx2.

 The circles f f p are closed horizontal trajectories for -d =

 - qa aC02q - re 0q for some 0 and r > 0. Then e'6q also has closed horizontal
 trajectories, proving the lemma.

 LEMMA 5.4. Under the hypothesis - I a, 1j/2log j ti I > 1, we have

 Fq(yi) -I Re27rCoal 2, F(q(yi) -I Im27TC0al /21

 Proof By Lemma 5.3, qdx= C02aid/ Now

 Fq(Y, ~fi Coa'12d?~i F (Y ) I Clai/n l
 p

 where p is a circle. Set

 p - re'0, Fq(y,) =f| IImCoa' dO = 27r Re Coa'2!.

 Similarly we compute Fq( yY).

 We finally prove Proposition 5.1. For any set of equations in

 Fq( y), F q(y,), si, s' that define Q' locally, we take local coordinates, as in Part
 4.2, that define this set. The Lebesgue measure as computed with respect to

 these is at least as great as the measure Mk (or ti X 1) since as usual these
 coordinates are integral linear combinations of canonical coordinates. It is enough

 to show then that the measure computed in any set of Fq(y,), F(yi), Si, S' is
 finite. Now Fq(-y) and F ((y/) are bounded for all i and si, s' bounded for
 j ? p + 1 by Lemma 5.2. By Lemma 5.2, again for i < p + 1, we may assume

 - a, 1l/21og I t, I?1. Now by Lemma 5.3, y, is transversal for both Fq and F q
 and therefore s, and s,' are local coordinates. (Recall ?4.2.)

 The idea is now that although si, s' may be large, for given Fq(y,), Fq(yj), Si,
 the possible error in s' is small.

 Let

 D= {tiIr,<1 < r2l
 be the largest annulus swept out by closed trajectories given by Lemma 5.3. The

This content downloaded from 
������������128.114.223.193 on Tue, 05 Oct 2021 23:19:11 UTC������������ 

All use subject to https://about.jstor.org/terms



 INTERVAL EXCHANGE TRANSFORMATIONS 189

 circles l ri contain zeroes of q and s1, s,' are the transverse lengths of a
 straight line p joining zeroes on opposite sides. Set

 u =Im Ca j, uj Re Coa 2 *

 We divide the set of q into the overlapping sets ulu,' c; 32 and u,/u' and
 prove the measure of each is finite. Let a be a radius of D going from one zero to

 the other side. We compare s, and s,' to Fq(a), F_ q(a). Since a and p differ up to
 homotopy by a piece 1 of the boundary of D and a, p and 1 are all transverse, the

 triangle inequality gives

 (5.7) Fq(a) - F,(l) ? s, ' Fq(U) + Fq(l).

 with similar inequalities for st and F-q* Now a computation shows

 (5.8) Fq(a) u rlog2, F q(a) ulogr2

 and by Lemma 5.4,

 (5.9) Fq(l) F-q(l) ? 2 7l Coa,j 11/2.

 Now suppose u,/u' u 32. Then for given Fq(y,) = 27ru', F.(-(y7) 27ru, and sp,
 we have

 - '' <Sf - u logr + u log- _ - j

 ?277jCjja~j 2++2iC0 .'"?10
 -:z2 7T I Co I Iai 11/2 + - i27 I Colai 11/ 2 3 17STI Co I Iai 11/2

 I~~~~~

 Recalling that CO is certainly bounded, we have

 (5.10) I- I' CIaj 1/2

 This says s,' varies little for given u,, u,', s,. We wish to use iterated integration to

 find the area A. First fix all variables Fq(y,) = 27ru', F q(Yj) 27ru, and denote
 by Ate t< the integration with respect to s, and S'. We are assuming ulu < 2. By
 Lemma 5.2 and inequalities 5.4 and 5.10, we have

 A C1(1i s#'21ogIt1 C I a 11/2 ds, - C a, I log I tj I < C.

 To find A we will then need to integrate with respect to those u;, u which are

 local coordinates, but they are bounded in any case.

 Note that even if a u, or u' is not a local coordinate, the ones that are

 determine all the rest. Thus if these are done last in the integration, we can
 assume all u , u' fixed.
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 Finally, the set where u,/u,' >- is dealt with by computing the error in s
 with given Fq( y,), Fq(-y,), s'. This completes the proof of Proposition 5.1.

 6. Proof of Theorems 1 and 2

 We start with the following version of Birkhoff's ergodic theorem.

 PROPOSITION 6.1. Suppose F is an ergodic foliation with transverse foli-
 ation G, /3 a transverse segment of F and 0 a0 <a1 < ... < a, fixed
 numbers. For any finite leaf L of F, partition L into segments Lk of length
 1lari(ak- ak 1) L , k 1,...,n, where I L I is the total length of L. Let the
 interval exchange map on /3 have intervals X, and let #( n .) denote the number
 of intersections of two arcs. Then

 rn #(XI n Lk) F(Xi)
 I X- #(/3 n Lk - F( A)

 for almost all leaves L with initial points on /3.

 Proof Apply the ergodic theorem successively to Lk =U 1Li.
 Then note that #(X, n Lk) ? #(X, n Lk) - #(X0 n L k--) and that
 #(X, n Li)?#(X, n Lk) is bounded above and below away from zero because
 the numbers a, are fixed. The rest is a routine - argument. The main result now
 is

 PROPOSITION 6.2. Let q e QO or Qk have nonuniquely ergodic minimal
 vertical foliation F__ and q0 e Q0/Mod(g) or q0 e Qk/Mod(g) on the surface
 XO be an S2 limit point of the orbit qt/Mod(g), t > 0. Then there exist at least
 two disjoint submanifolds X1, X2 of X0 with boundary a common dividing curve

 y satisfying Fq(y) 0 O. Further, Xi, i = 1, 2, contains a closed curve yi satisfying
 F --,(Yi) ?0.

 Proof Let F1 and F2 be two distinct mutually singular ergodic foliations
 topologically equivalent to F -q They are each transverse to Fq. We normalize so
 that Fq and F1 and Fq and F2 each determine a quadratic differential in Q0. There
 exists a segment /3 of a leaf of FIJ such that F1( ,/) # F2( ,/), for otherwise F1 = F2.

 Let X, be the intervals for the exchange map on /3.
 Let y1 and Y2 be generic points of F1 and F2 respectively, that is, so that

 Proposition 6.1 holds with respect to the intervals of the exchange map and for
 any partition. Note that if FV is not orientable then /3 induces a return where
 some rectangles "come back on the same side". Proposition 6.1 is equally valid.

 Let 1, be the height with respect to Fq of the ith rectangle and F1(X,) the
 length with respect to F1. Now if L', i = 1,2, is a leaf through yi and {ai} is any
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 set of numbers as before,

 (6.1) rim Lk ) L )im - =l,(X3) 1 JL'J -0c 0( 14 L L'J -o #( 14) F (/3) F (/3)
 by Proposition 6.1 and the fact that the areas of the quadratic differentials are

 one.

 Let qt -* q0. Via the Teichmiller map, yi can be thought of as a point on
 Xn, the carrier surface of qt, and by taking subsequences we may assume it
 converges to a point yi on X0. Let Vi be the vertical trajectory of q0 through yi.
 We claim no horizontal trajectory intersecting V1 can also intersect V2. To prove

 the claim, consider any segment of V1 with y1 as initial point and the resulting

 return map on that segment. Suppose a segment of V2 intersects and therefore
 crosses a rectangle R of width a of this return. Let c be the length of V2 from Y2
 to the beginning of the segment and d be the length of V1 from y1 to the first

 point of R. The figure below illustrates with nonorientable q0.

 ( Y1

 V

 R (a

 V2 C

 Y2

 For any E > 0 consider the partitions

 i) 0 < d < d + < d + a - E < d + a and

 ii) 0 <c < c + E <c + a - - <c + a,

 each with five division points counting endpoints.

 The segment of V1 of length a + d and of V2 of length a + c are limits of

 segments V1n and V2n of q,. These correspond under the Teichmfiller map
 to vertical segments again written V1nV14 of q of length Kn/2(a + d) and
 K /2(a + c) where t = log K /2. Let Vi' be the subsegment of Vi?n of length
 K /2a determined by the partitions (i) and (ii) using division points 2 and 5, and

 ViE be the subsegments of length K1/2(a - 2c-) formed by the division points 3
 and 4. We also will consider these as segments of length a - 2c on qt. via the
 Teichmiller map.
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 Take N large enough so that by Equation 6.1 for all n ? N,

 K' 2a I 1K__1___2

 (6.2) ?(f>nrK ) J?(I3) <E and Kn (a-2E) _

 i- 1,2.

 Furthermore, by the same reasoning with division points 2, 3, 4, and 5 and

 Equation 6.1

 (6.3) ?2IK2 - <1
 * | #(,B ~n V2'ln) -#(P n V2fn) F2(fl)|

 Since lim = V, for n large enough, every horizontal trajectory of qt,
 intersecting V{'n intersects V2'n and every trajectory intersecting V2,, intersects
 VIln. We have

 (6.4) #(3 n V,-,) < #( n V21), #(/ n V2(n )< ?(rn Vli)

 Then

 I~,(P2EK 1 2()2K 2
 #(P n V1)< -- _ _ (B + #(,B n V2,Jl

 < 2(n ) +1-cF2(i )

 F2(13)2E + 1 ?(/
 < #( n lrVI) + 1- F2( ) F1() ) a

 by 6.2, 6.3 and 6.4. Therefore

 #(/3 n V21) 2cF2(p3) ( 1
 #(,B n VI(,, a(1 - EF2(f3)) F1(o) !

 Similarly,

 r n VI) -1< 2cF1(f3) + 1
 #(3 n V2r1) a(I - -F1(/)) F2(I)

 Since #( 13 n V(1 ) and #(,1 n V24n) do not depend on - and - is arbitrary, the last
 inequalities give

 lim I( Rnv) ' and lim I( R ) -< nm4C (P n V1)n 1n ?(/3 nl V,) 1 ?
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 so

 hil# (,8 n vla,
 n - x #(#l n v2a )

 Since Vnn and V2"' have the same length, by 6.1,

 l #(n n van) FI(P)
 net_ #(1 n V21 ) F2(f3) #1

 which is a contradiction, proving the claim.

 Therefore no horizontal trajectory intersecting V1 intersects V2. Therefore no
 horizontal trajectory is dense so X0 is divided into two or more domains
 separated by a dividing curve y with F ( y) = 0. Any horizontal trajectory is
 contained in one domain. Further if V1 and V2 intersected the same horizontal
 domain, a horizontal trajectory in that domain would intersect both if it were

 dense. If the horizontal trajectory is not dense in the domain, there is an annulus
 of closed trajectories; V2 could be extended so a closed leaf would intersect each,
 a contradiction in either case. Therefore V1 and V2 are entirely contained in
 different horizontal domains X1 and X2. It follows then that the vertical domains

 of V1 and V2 are also contained in X1 and X2 respectively, since Vi is either dense
 in a vertical domain or the domain is an annulus. These vertical domains are

 bounded by closed curves /1 and 82 satisfying Fq ( /) 0 0 and 8i C Xi,
 i = 1,2, completing the proof.

 Remark. The process that takes place in the proposition is that some
 rectangles determined by a vertical segment of qt. of bounded length have
 heights approaching zero. The limiting situation of q0 has fewer rectangles and
 not every horizontal trajectory of q0 is contained in these rectangles; that is, the
 rectangles for the vertical segment V1 do not partition the entire surface. The

 vertical trajectories V29, are contained in the "disappearing" rectangles of the
 exchange map on V1n.

 Denote by Wk (resp. W0) the set of q C Q0' (resp. q C Q9) such that there
 exist P1,B82 disjoint curves with Fq(/1) =Fq( 12) 0-. If q satisfies the conclu-
 sion of Proposition 6.2, q E Wk or W0.

 LEMMA 6.3. Wk (resp. W.) is closed in Qok (resp. Q9) and has measure zero.

 Proof. That the measure is zero is clear because in Q. or Qk the differentials
 with horizontal (or vertical) foliation assigning zero to some closed curve have
 measure zero.

 We will now prove W. is closed in Q.. The proof for Wk is exactly

 the same. Suppose q. E WOV and limncqn - q, Fq9(Yn) - 0, Fq,(18n) -- 0 and

This content downloaded from 
������������128.114.223.193 on Tue, 05 Oct 2021 23:19:11 UTC������������ 

All use subject to https://about.jstor.org/terms



 194 HOWARD MASUR

 fl, n y, = 0. We let x , y, be critical points of q,1 on yn and /3, and we may
 assume limn - ox - x0 and limn x xn y- yo critical points of q. Then yn converges
 to a leaf y of q at x 0 and /tn converges to a vertical leaf /3 at yo. Suppose y is
 dense. Then it intersects /3 and for large n, yn n P, r f3 0. Therefore y and
 similarly /3 are not dense and are also disjoint. They must be contained in disjoint

 spiral domains, one for y, the other for /3. The boundaries of these domains

 contain the desired curves ym, #O.

 Remark. If there are sufficiently many ergodic measures, for instance 3g-3,

 we can prove no q0 can exist with many vertical spiral domains, each contained
 in a horizontal one as required by Proposition 6.2. In that case q, has no 2 limit
 points in 90/Mod(g) and all 5 limit points are on the boundary.

 Proof of Theorems 1 and 2. By Proposition 4.1 we need only show the set of

 q C 9p (resp. Q.) with nonuniquely ergodic vertical foliation has measure zero.

 Clearly the sets Wk and W. of Lemma 6.3 are invariant under Mod( g) so

 Wk/Mod( g) and WO/Mod(g) are closed of measure zero. Now suppose E is a set
 of positive measure in 9ok (resp. Q0) consisting of differentials with nonuniquely
 ergodic vertical foliations. We may assume the closure of E is disjoint from

 Wk/Mod( g) (resp. W,/Mod( g)). By Poincare recurrence, for almost all q E E, qt.
 t > 0, returns for arbitrarily large t, to E and therefore qt has Q limit points in E.
 By Proposition 6.2 all such limit points are in Wk/Mod(g) (resp. W0/Mod(g)).
 This is a contradiction.

 Proof of Corollary 1. By the main theorem of [6], the map H0(X, O22) -- MF
 given by q -- Im q'I2dz is a homeomorphism. Near q with simple zeroes it is
 easily seen to be C' in local coordinates. Therefore sets of measure zero
 correspond and the corollary follows from Theorem 2.

 7. Proof of Theorem 3

 7.1 We will prove the following result and show it is equivalent to Theorem 3.

 THEOREM 4. The Teichmfiller flow on Q9/Mod(g) is ergodic.

 COROLLARY. Almost all orbits in Q)/Mod(g) are dense. That there are any
 dense orbits was shown in [12].

 A foliation is arational if it has no saddle connection. This implies all leaves
 are dense.

 We now record a basic property of uniquely ergodic foliations. If F is

 uniquely ergodic, then the limit in Birkhoff's ergodic theorem in Section 1 holds
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 uniformly for all x C 13 and continuous f:

 IN
 (7.1) lim N E1 f(T (x)) ffdvuniformly.

 N- oc N- I

 PROPOSITION 7.1. Suppose F1 and F2 are uniquely ergodic arational projec-
 tively inequivalent foliations. Then F1 and F2 are transverse.

 Remark: S. Kerckhoff and W. Thurston indicated (oral communication),

 that a stronger theorem can be proved using the techniques of geodesic lamina-

 tions. The proposition of course means that F1, F2 are equivalent to transverse
 foliations.

 Proof. We begin by constructing a sequence yn of simple closed curves
 converging to F1 in the topology of PF. Let x be any point on a transverse 18 and

 L a leaf through x in either direction. For some sequence ni there will be no
 return point Ti(x) between x and T'i(x); / < ni. Let -y be formed of the part of
 the leaf L from x to T'i(x) followed by the segment of 13 between T'i(x) and x.

 To show yn -- F1 in PF we need to show for any two simple closed curves p1
 and P2,

 (7.2) lifm i(yn, pa) _ F1(p1)
 n ci (yn ,P2) -FJl(P2)

 where i(-, -) is the geometric intersection number. Any p can be represented as a

 finite union of segments joining singularities. The number of intersections of any
 such segment a with L is the same as the number of intersections of L with an

 appropriate segment a of 13 where F(a) = F(a). By 7.1 we have

 lim #(13 n L) - F1(a) F1(a)

 Now 7.2 follows. We may similarly construct 8 F2 in PF.
 Now let G1 be any foliation transverse to F1. Represent a with respect to

 the quadratic differential by a geodesic which is a finite union of line segments

 each making a constant angle with the leaves of F1. Let On be the minimum
 angle. We claim lim On > 0. Suppose otherwise that there is a subsequence again
 denoted Sn with limn 0n = O. The segment 6n C 6n with angle On has length
 going to infinity. Since the leaves of F1 are dense, An has the property that for any

 open set V, 6i n V # 0 for n large enough. Since 8n is simple this implies all
 intersection angles of 6n have limit zero as n goes to infinity.
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 196 HOWARD MASUR

 Now let E > 0. In the following estimates -i depends only on a, pI, P2 and
 will be chosen later. By 7.1 there is an Lo such that

 (7.3) #(Ln pi) F1(p1)
 #(L n P2) F1(P2)

 for any segment L with I L I ' Lo. Also take a neighborhood W of the zeroes
 small enough and Lo large so that

 (7.4) #(L np, n w) < F2, 1,2

 for any L with I L ? Lo.
 Consider the segments B1,..., BS each of length Lo,_ one on each critical leaf

 of F1, each with a critical point as one endpoint. Let 6n be a segment of S. of
 length Lo not intersecting any Bi and initial point x. Then since the angles 6n
 makes with leaves goes to zero, for n sufficiently large, there is a leaf segment L

 starting at x of length Lo intersecting p, the same number of times 6n intersects p,
 except possibly counting the intersections each has with p, n W. By 7.4 these are
 very few and we can take n large enough and E2 small enough so that

 (7.5) #( S. ) I <?-/4, i=12
 Now again since the angle goes to zero so that 6n crosses B, rarely, we may for
 large n write 6n as a disjoint union

 6n U _.. U rl(n) U ... U6p2(n)

 such that

 i) | bStl=L,,, Si n Bj 0; 1 -< i c- rl~) 1 j S;
 r2(n)

 E ~#(S n p,)
 ii) i~~~rz~~n)+ 1 ~< j=152.

 # i(6n p,)
 i~ n

 Then we find Li satisfying 7.5 with respect to 6', i r1( n) and also

 satisfying 7.3. By picking c1 small enough we conclude from 7.3 and 7.5

 #(i n pl ) _ F(Pl)<
 oS nP2) FJ(P2)< 2 i?r()
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 and therefore

 r,(n)

 n F1(p1) 2

 Finally, by taking -3 small and n large by (ii), we have

 |#(n0n p1) _ F1(p1)
 #(0n nP2) F1(P2) <

 This implies that 6n -* F1 in PF which is a contradiction proving the claim.
 We now finish the proof of the proposition. Eventually all components in

 the complement of 6n U yn are simply connected. For suppose i(fln, Yn) 0 ? for
 some fib, The angle fin makes with leaves goes to zero, and so fin converges to F1
 in PF. This clearly means i(S6n, fin) #7 0. We may therefore find transverse
 foliations Fin, F2n such that Fir has closed leaves homotopic to Yn F2n closed
 leaves homotopic to 6n ([12], Prop. 2.4). We give the cylinder of F1n height
 1n = ?/#(yn 0 fi) and the cylinder of F2n height 1 F,(6n). Since Fin, F2"

 converge in PF to F1 and F2, we need to show qn = (Flng F2n) has a convergent
 subsequence in Q.

 The norm of qn is i( Yn n )hn/F(S6n). Since the slope of 6n is bounded away
 from zero, i(Yn yn) hn/F1(6n) is bounded above and below. We therefore need
 only show that the carrier Riemann surfaces Xn of qn lie in a compact set in Tg. If

 not, there exist curves pn such that the extremal length of pn on X" converges to
 zero. Since the metric i qn 11/2 is only one competing metric in extremal length
 and II qn II is bounded above, we have

 lim (I jqn1 1 2dZ) 0.

 This implies both

 lim F 0(p ) lim i(pnYn)hn 0 and lim F2 ipn) F (6 ) = 0.
 n-io n-xO nix ni F1n

 The first means the slope of pn with respect to (F1, G1) approaches zero, which

 means Pn converges to F1 in PF. But then, i(Pn, 6n)/F1(6n) is unbounded and we
 have a contradiction. This completes the proof.

 7.2 Proof of Theorem 4. We follow the outline of Hopf's proof [5]. We first note

 that since to(QO/Mod(g)) < oc, the flow on Q0/Mod(g) is conservative: for
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 198 HOWARD MASUR

 almost all q, q, returns infinitely often to a compact set. Now for any f E Ll(fi,)
 consider

 ft(P) = lim Tff(qt)dtand

 P (P) = lim T|f(q-t)dt.

 Since i(Q0/Mod(g)) < x, the Birkhoff ergodic theorem says ft(P) and f*(P)
 exist almost everywhere [Fio], and are invariant under the flow and

 (7.6) f fth do f fh d = | f*h dy0
 O)/Mod(g) Q /Mod(g) Q MoCd(g)

 for any bounded invariant h. Taking h = sign(f - f*) we have 17* f* almost
 everywhere. To show the flow is ergodic, we need to show 7 = f* = constant

 almost everywhere. This will follow from two lemmas. Let d be any metric on

 Q0/Mod(g) compatible with the topology.

 LEMMA 7.2. Let f be continuous on Q,/Mod(g) with compact support K.
 Suppose P, P' E Q0/Mod(g) satisfy lim, d(Pt, P,+) 0 for some a. Further
 suppose ft(P) exists. Then so does f*(P') and ft(P) =ft(P') with similar

 statements about f* and t -- . - cxc

 Proof. Since 17 is flow invariant we may assume P, P' satisfy

 lim td(P,, P(') = 0. Given - > 0, let 6 > 0 be so that d(P,, Pr') < 8 implies
 I f(Pt) - f(Pt') I < e. Let To be large enough so that for t > Top d(Pt, P(') < 8. Let
 B = maXxcK I f(x) I. Then

 ] Vf(Pt) - f(Pt')dt I 1S 'f(Pt) - f(Pt') I dt

 To + I C f( Pt )- f(Pt' ) |dt

 2BTo c(T- TO)
 T T

 The limit of the right side is E as T -- cxc. Since E is arbitrary we have

 fP(P') = fP(P).

 LEMMA 7.3. Suppose f is continuous with compact support K C Q0/Mod(g).
 For any k > 0 let

 E = {P|fI(P) ?k},F {P I f*(P) > k}).
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 Then

 0(E) = p,(F) = O or t,(Q0/Mod(g) - E) = po(Q0/Mod(g) - F) = 0.

 Proof. Since P and f* are flow invariant we may consider E, F as sets of
 lines and therefore as subsets of PF X PF/Mod(g). Since almost all foliations are
 uniquely ergodic by Theorem 2, and almost all foliations are arational we may

 use Proposition 7.1 and restrict ourselves to the set of projective arational

 uniquely ergodic foliations which we write PUE. Al pairs in PUE X PUE off the

 diagonal are transverse. In [13] we proved that if P, P' E Q have the same
 uniquely ergodic vertical foliation, then lime T(X, , X') 0 for some a

 where T is the Teichmiiller metric and X,~,1 and X carry Pt+, and Pt' respec-
 tively. Equivalently we have the same result if P, P' E Q0 have the same
 projective uniquely ergodic vertical foliation. In this latter statement, since Pt+,

 and Pt' have unit norm and their vertical foliations are projectively the same we
 must also have

 lim d(Pt+,,, P') 0 0

 for any sequence t such that Pt+, , P,' E K. This follows because
 lim T(X, , X') 0 0 and the theorem in [6] which says that on any Riemann

 surface there is a unique normalized quadratic differential with vertical foliation

 in a given projective class. By Lemma 7.2, ft( P) = f( P') when either exists.
 Therefore we may write E = PUE X E1 for some E1 C PUE.

 Similarly F = F1 X PUE for some F1. Since fP(P) = f*(P) almost every-
 where, we have m(E - F) = m(F - E) 0 0 where m is measure (class) on
 PF X PF. This gives m(Ff X E1) = m(F1 X E') = 0. Therefore we either have

 nl(F,) m (E) 0 or m(E1) = m(F1) 0 O where now m is measure (class) on
 PF. This proves the lemma.

 To finish the proof of the theorem we note following Hopf that the linear

 operator f -- ft is bounded in L'. This follows from 7.6 by taking h = sign ft

 giving f I Jf I di ? f I f I dM. Therefore it is enough to show ft constant almost
 everywhere for a dense set of f e Ll(Mi), namely those f continuous with compact

 support. By Lemma 7.3 for any such f, {F P fI(P) ? k} has measure zero or its
 complement does for any k, proving ft constant almost everywhere.

 Proof of Theorem 3. Suppose E C PF X PF is invariant. Then so is

 E n (PUE X PUE) and they have the same measure class by Theorem 2. The

 latter set gives rise to an invariant set of lines in Q0 which by Theorem 4 has
 measure zero or its complement does.

 UNIVERSITY OF ILLINOIS, CHICAGO CIRCLE
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