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 Annals of Mathematics, 124 (1986), 293-311

 Ergodicity of Billiard Flows and
 Quadratic Differentials

 By STEVEN KERCKHOFF, HOWARD MASUR and JOHN SMILLIE1

 Consider the following simple mechanical system. Two objects with masses

 m1 and m2 are constrained to move along a straight, frictionless track. The
 objects collide elastically with each other and with barriers at either end of the
 track. Certain quantities of physical interest are defined as time averages along
 the trajectories of this system. These quantities are difficult to compute directly.
 If such a system is ergodic then, with probability one, these time averages are
 equal to integrals over phase space which are easy to calculate.

 The question of the ergodicity of this system has been considered by a
 number of mathematicians. It is raised, for example, by Sinai ([S], p. 85). We will

 show in this paper that for a dense set of pairs (ml, M2) this system is ergodic.
 These are the first such examples for which ergodicity has been established.

 The motion of two masses on an interval is equivalent to the motion of a
 single particle on a right triangular region of the plane where the particle obeys
 the laws of motion of a billiard ball. That is to say that the particle moves with
 constant velocity in the interior of the table and reflects off the boundary of the
 table so that the angle of incidence is equal to the angle of reflection. Such
 billiard flows are closely related to geodesic flows.

 Let Q be a planar polygon. One can define a geodesic flow f, on the unit
 tangent bundle U(Q) so that orbits of this flow project to billiard ball paths on
 Q. The polygon Q is said to be rational if all of the angles of Q are rational
 multiples of r. When Q is rational the tangent vectors to a given orbit are
 parallel to a finite set of unit vectors. The orbits with initial direction 6 lie in an

 invariant surface MO which consists of a finite number of copies of Q. one for
 each potential direction of an orbit with initial direction 6 (cf. [F-K]). The
 dynamical analysis of ft breaks up into an analysis of the flows flM9 as 6 varies.

 'This work was supported by the National Science Foundation, the Mathematical Sciences
 Research Institute and the Institute for Advanced Study.
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 294 S. KERCKHOFF, H. MASUR, J. SMILLIE

 A flow is uniquely ergodic if there is precisely one invariant probability

 measure. We will prove:

 THEOREM 1. For almost every 6 the flow ft I MO is uniquely ergodic.

 A flow is ergodic with respect to a probability measure if every invariant set

 has measure zero or one. It is easy to see that if a flow has only one invariant

 measure then the flow must be ergodic with respect to that measure. The

 surfaces MO have natural measures coming from Lebesgue measure on Q. These
 measures are invariant. As a corollary to the theorem we have: For almost every

 6 the flow fjIMO is ergodic with respect to the natural measure on Mo.
 Theorem 1 has consequences for billiard tables which do not have rational

 angles. The set of all polygons with a given number of sides forms an open subset

 of a finite dimensional vector space. We would like to thank A. Katok and M.
 Boshernitzan for independently pointing out to us the following corollary of
 Theorem 1.

 COROLLARY 1. There is a dense G8 in the space of polygons consisting of
 polygons for which the billiard flow, ft is ergodic.

 Theorem 1 follows from a result that we prove about Riemann surfaces and
 quadratic differentials. A quadratic differential q determines a vertical foliation
 defined by Re q1/2 dz = 0. This foliation admits a transverse invariant measure.

 If it admits precisely one such measure up to scalar multiplication we say that it
 is uniquely ergodic.

 THEOREM 2. Given a compact Riemann surface M and a holomorphic
 quadratic differential q, then for almost all 6 the vertical foliation of e Oq is
 uniquely ergodic.

 The results of [Z-K] and [B-K-M] show that for a typical direction 6 the flow
 is minimal, i.e. all orbits are dense. It is a notorious fact however that minimality
 does not imply unique ergodicity for quadratic differentials or, equivalently, for
 interval exchange transformations. If Q is a rectangle or, more generally, if
 reflections through the sides of Q generate a tesselation of the plane, then
 theorem 1 is a consequence of Weyl's analysis of toral flows, as is pointed out in
 [F-K]. If the affine group generated by reflections in the sides of Q acts discretely

 on the plane, then Theorem 1 follows from results in [B] and [G]. In these special
 cases minimality does imply unique ergodicity.

 Masur ([M]) proved that the set N of non-uniquely ergodic quadratic
 differentials has measure zero with respect to smooth measures on the space of
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 quadratic differentials. (Veech in [VI] proved a related result for interval
 exchanges.) Theorem 2 shows that the intersection of N with each circle { eiq:
 0 < 6 < 27 } has measure zero. The Veech-Masur results follow from our result
 by application of the Fubini theorem. The Fubini theorem and our results also
 give the following new result:

 COROLLARY 2. On a given compact Riemann surface almost every holomor-

 phic 1-form has a uniquely ergodic vertical foliation.

 Theorem 1 follows from Theorem 2. This reduction is discussed in Section
 1. Theorem 2 is a consequence of Theorem 3 which is proved in Section 2 and
 Theorem 4 which is proved in Section 4. Corollary 1 is a consequence of the
 more explicit Proposition 4 which is proved in Section 5.

 1. Preliminaries on quadratic differentials and billiard tables

 We adopt a geometric approach to quadratic differentials. We define a
 quadratic differential on a surface to be a structure determined by an atlas of
 charts mapping open subsets of M to R2. We require that the change-of-
 coordinate functions be restrictions of maps of the form v -> (v + c) or
 v -* (- v + c). We also allow a finite number of singular points at which the
 charts are n-fold branched coverings of R2/(+ 1). Two quadratic differentials are
 isomorphic if there is a homeomorphism between them which takes singular
 points to singular points and which at other points takes the same local form as
 the change-of-coordinate functions.

 Fix a complex structure on R2. Let M be a surface of genus g. Each
 quadratic differential on M gives rise to a complex structure on M minus the set
 of singularities of M. This complex structure extends to all of M. The space of all
 isomorphism classes of complex structures on M is the moduli space Rg of
 Riemann surfaces of genus g. If we consider complex structures with respect to
 the equivalence relation of being isomorphic by means of a homeomorphism
 homotopic to the identity then the resulting space of equivalence classes is the
 Teichmiller space Tg. Similarly we can consider the space of quadratic differen-
 tials with respect to the equivalence relation of being isomorphic by means of a
 homeomorphism homotopic to the identity. We denote the resulting space by Qg
 which can be identified with the cotangent bundle of Tg and given the bundle
 topology. The mapping class group Mod(g) acts on Tg and on Qg. The quotient
 space of Tg by Mod(g) is just Rg. Let Q0 denote the space of quadratic
 differentials with area one. Let QD = QD(g) denote the quotient of Q0 by
 Mod(g).
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 296 S. KERCKHOFF, H. MASUR, J. SMILLIE

 A quadratic differential defines a metric on M. Outside of the singular set
 this metric is a Riemannian metric with zero curvature. We say that a metric has
 a cone type singularity at a point p if there is a neighborhood of p which is
 isometric to a neighborhood of the origin in R2 with the metric ds2 = dr2 +
 (crdO)2. In this case we say that the cone angle at p is 2,gc. The metric defined
 on M by the quadratic differential has cone type singularities at the singularities
 of the quadratic differential. Each cone angle is a multiple of 'r. We can speak of
 parallel translation with respect to the connection determined by this metric.
 The global obstruction to parallel translation being well-defined is the holonomy
 group which is a subgroup of 0(2). If a metric of zero curvature arises from a
 quadratic differential, then the holonomy group is either the trivial group or
 { I, -I }. One says that the quadratic differential is orientable in the first case
 and nonorientable in the second case. Note that the underlying surface is always
 orientable. Conversely if a surface of zero curvature has cone type singularities
 and the holonomy group is one of these two groups, then the metric comes from
 a quadratic differential.

 A geodesic is a curve with the property that the tangent lines at any two
 points of the curve are parallel. We will have occasion to consider geodesics
 which pass through singularities. Such curves can also be thought of as unions of
 geodesic segments with singularities as endpoints.

 A quadratic differential defines a pair of foliations on M. The horizontal
 foliation is the foliation induced on M by the foliation of R2 by horizontal lines.
 The vertical foliation is induced by the foliation of R2 by vertical lines. Both of
 these foliations have transverse measures determined by the quadratic differen-
 tial. If the quadratic differential is orientable then we can define horizontal and
 vertical flows.

 If a geodesic path is contained in a coordinate chart then its image in R2 is
 a line segment. We define the horizontal and vertical components of the curve to
 be the horizontal and vertical components of its image. If a geodesic path or
 curve is not contained in a single chart then we define its horizontal and vertical
 components by dividing it, into short pieces and summing the components of the
 pieces. Two isotopic geodesic curves have the same horizontal and vertical
 components.

 Let { 0i } be an atlas and let a e SL(2, R). We can define a new atlas { a }
 In this way we define an action of SL(2, R) on the set of quadratic differentials.
 Note that if a = - I then the two atlases give isomorphic structures. Thus this
 action descends to a well-defined action of PSL(2, R) = SL(2, R)/{ I, -I }. The
 notion of parallel translation remains unchanged when the coordinate charts are
 changed as above. In particular the set of geodesic curves remains unchanged.
 The components of a geodesic do change however.
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 ERGODICITY OF BILLIARD FLOWS 297

 The following one parameter subgroups of PSL(2, R) will be important in
 what follows.

 [et/2 01
 9t= L e- t/2

 [ cos(6) sin(8)]
 = L- sin(8) cos(6)]

 S lo 11

 We refer to g as the geodesic or Teichmiiller flow. This can be thought of as
 the geodesic flow on the moduli space. The action of r9 on a quadratic
 differential q is the same as multiplying q by e2i0. Since r+ = - r9, multiplica-
 tion by r9 defines an action of the circle R/7rZ on the set of quadratic
 differentials. Note that the action of r9 leaves the "flat metric" invariant. Any
 two quadratic differentials which determine the same metric and orientation on
 M differ by the action of this subgroup. We refer to h as the horocycle flow.

 The groups g and r act continuously on QD. Since PSL(2, R) is generated
 by these subgroups it acts continuously on QD.

 The dynamics of these flows have been considered in [M] and [V2]. The
 orbit of a quadratic differential under PSL(2, R) is called a Teichmiller disc and
 has been considered by many authors (cf. [K]).

 Action of PSL(2, R) on geodesic segments: Let A be a matrix representing
 an element of PSL(2, R). Let /3 be a geodesic segment. Let h1 and v1 be the
 horizontal and vertical components of /3 with respect to q. Let h2 and v2 be the
 coordinates of /3 with resect to Aq. Then:

 [C d][V] V2

 Note that in this equation the matrix and two vectors are well defined modulo
 multiplication by - 1.

 Reduction of billiard problem to quadratic differential problem. We will
 consider only billiard tables which are subsets of the plane though this discussion
 can be carried out for more general "tables" (cf. [G]). Let Q be a polygonal
 region of the plane. We do not require that Q be convex or that the boundary of

 Q be connected. Let V be the set of vertices of Q. Let 0(2) denote the group of
 linear isometries of the plane. For each side, si, of Q let pi e 0(2) be the
 reflection through a line parallel to si and passing through the origin. We
 construct the phase space for the billiard flow as follows. Let P be the product
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 298 S. KERCKHOFF, H. MASUR, J. SMILLIE

 space (Q-V) X S' with the following identifications. For x e si we identify
 (x, v) with (x, p(v)). After we make these identifications, the flow f is continu-

 ous although the continuation of an orbit through a vertex is not defined.

 Definition. Q is a rational polygon if the subgroup of 0(2) generated by

 reflections in the sides of Q is finite.

 Note that if the boundary of Q is connected then Q is rational if and only if

 every vertex angle is a rational multiple of 2w. If the boundary is not connected

 then the condition on the angles is necessary but not sufficient for the rationality

 of Q. For the remainder of the section assume that Q is rational and let

 F C 0(2) be the group generated by the reflections in the sides.

 In the rational case we can construct an "integral of motion". Note that F

 is a dihedral group. Choose an interval I contained in S1 which is a fundamental

 domain for the action of F. We can also think of J as the quotient of S1 by the
 action of F. We can define a function from Q X S1 to J by composing the
 projection onto S1 with the quotient map from S1 to J. This composition is
 compatible with the identifications defining P and therefore induces a function r

 from P to J. Also r is constant on orbits of f *

 Let e9 be an interior point of the interval J. There is a surface 7r- 1(6) with

 punctures corresponding to vertices of Q. Denote this surface by Mo. Since each
 such surface is invariant it makes sense to analyze the flow restricted to any such

 surface. Each surface inherits from Q a flat metric with cone type singularities.

 The flow ft j Mo is generated by a vector field on Mo which is parallel with
 respect to the flat structure on Mo. With respect to their flat metrics the surfaces

 Mo are all isometric. We will describe a natural identification of any two of them.
 Let 0 and X be points in the interior of the interval J. If (x, v) is in Mo then we
 identify it with (x, v'), where v' corresponds to X under the quotient identifi-

 cation and v' belongs to the same fundamental domain as v under the action of

 F on S'. With this identification MO, when thought of as a Euclidean manifold, is
 independent of 6. We will denote it by M. We can choose a direction on M and

 thus a quadratic differential q so that each of the flows ftjM9 is equivalent to one

 of the flows generated by some roq for 0 in J. We see from this that Theorem 1
 follows from Theorem 2.

 Section 2

 Definition. A quadratic differential q is divergent if gt(q) eventually leaves
 all compact sets as t increases to infinity. A quadratic differential is recurrent if
 it is not divergent. Note that q is recurrent if and only if the w-limit set of q is
 non-empty.
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 The proof of Theorem 2 divides into two cases, depending on whether r9(q)

 is recurrent or divergent. The divergent case is treated in Section 4. In this

 section we consider the case of recurrent r9(q) and prove the following:

 THEOREM 3. The set of 0 for which r9(q) is recurrent and not uniquely

 ergodic has measure zero.

 The following formulas will be used in the proof of this theorem.

 (1) gths-exp(-t)g-t= hs

 (2) lM gtrs.exp(-t)g-t = hs.

 Formula (1) expresses the fact that the horocycle orbits are uniformly

 expanded by the Teichmfiller flow. Formula (2) shows that the horocycle flow is

 the limit of circle actions. Both formulas follow from a straightforward calcula-

 tion in PSL(2, R).

 Proof of theorem. According to [M] there is a subset B of quadratic

 differential space such that if q is not uniquely ergodic then every w-limit point

 of the Teichmifiler orbit of q is contained in B. For our purposes it suffices to

 note two properties of B. First, B is a closed set and second, B consists of

 quadratic differentials each of which contains a closed vertical geodesic (which

 may contain singularities). The second property implies that the intersection of

 B with any horocycle orbit is countable. To see this let q be a quadratic

 differential. Let a be a closed geodesic with components h and v. The

 horizontal component of a with respect to hs(q) is h + sv. Also a is vertical
 when h + sv = 0. This occurs for at most one value of s. If /3 is isotopic to a

 then it will have the same components and be vertical for the same s. The

 number of isotopy classes of geodesics is countable; thus the number of values s

 for which hs(q) can have a vertical geodesic is countable.
 Assume that the theorem is false. Let U be a positive measure set of 9 so

 that for 0 in U, r9(q) is not uniquely ergodic and the orbit of r0(q) under the

 Teichmiiller flow, gp, has non-trivial colimit set. Partition quadratic differential
 space into a countable collection of compact sets. For each of these sets K

 consider the set of directions 0 for which the delimit set of r9(q) intersects K.

 Now U is the union of this countable collection of sets; thus at least one of these

 sets must have positive measure. Call this set V and the corresponding compact
 set K.

 Let B. be the closed E neighborhood of B.

 LEMMA. For every 8 there is an E such that ,{ sE [E- 1, 1]: hs(k) E BE) <
 8 for each k in K.
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 Proof Let fn(k) = pf{s E [- 1, 1]: hs(k) E B17,}. The lemma is equiv-
 alent to the assertion that the supremum of fn goes to 0 as n increases. This is a
 consequence of the following two properties of a sequence of functions defined

 on a compact set: fn is a non-increasing sequence of functions with pointwise
 limit 0. Each function fn is upper semicontinuous. We will verify these two
 conditions but leave the proof of their sufficiency to the reader.

 We begin by showing that fn is an upper semicontinuous function. That is
 to say that, for every r, the set { k: fn(k) < r } is open. Fix a k for which fn(k) is
 less than r. Let S = [- 1, 1] - s E [- 1, 1]: hs(k) E Bln7}. By construction,
 the measure of S is greater than 2 - r. Let C be a compact subset of S with
 measure 2 - r. Let B' be the subset of pairs (k', s) in K X [- 1,1] for which

 h,(k') is not in Bln7 Using the compactness of C and the fact that B' is
 relatively open we can find a neighborhood U of k such that C X U is contained

 in B'. It follows that for k E U, fn(k) < r. This shows semicontinuity.

 Fix k and let Tn = {s E [- 1,1]: hs(k) E B11n}, fn g=(Tn). Now Tn is a
 decreasing sequence of sets so that fn(k) is non-increasing and lim fn(k) is the
 measure of nTn. Since B is closed the intersection of the sets Tn is just the set of
 s E [- 1, 1] such that hs(k) E B. The set of such s is countable and therefore
 has measure zero. This completes the proof of the lemma. We return to the proof
 of the theorem.

 Choose - so that the fraction of points in each horocycle orbit segment

 which lies in B" is less than 1/2. Let K' be the union of sets hs(K) for
 s E [ - 1, 1]. Let K" be the union of closed unit balls with centers in K'. K" is
 compact. Let Vn be the set of O's in V with the property that for t > n if
 g,(q) E K" then g,(q) E Be/2. The union of the sets Vn is V; thus there is some
 set Vn with positive measure. Choose one such set and call it V'. Let 6' be a
 point of density in V'. By changing coordinates we may assume that 6' = 0.

 The limit in formula (2) converges uniformly for s in any compact set.
 Choose n large enough so that for t > N and k E K the distance between the
 left hand side of (2) and the right hand side is less than e/2 when applied to any

 k e K and for s E [-1,1]. Consider a t > N for which gt(q) E K. Let
 6 E [- e-t, et]. Let s = e't 6. Applying the left and right sides of (2) to gt(q)
 shows that the distance between gtr0(q) and hsg,(q) is less than e/2. Claim:
 gtr,(q) E K". By assumption gt(q) E K. Since s E [- 1,1] hsgt(q) is in K'.
 The distance between hsgt(q) and gtr0(q) is less than one so that gtr3(q) is in
 K". For 0 E V', gtr0(q) is in B,72 when it is in K". If gtroq is in BE/2 then
 hsg,(q) is in B,. This can be the case for at most half of the s's in [- 1,1]. This
 shows that the density of V' in the interval [ - e -t, e - t] is less than 1/2. This
 argument holds for a sequence of arbitrarily large values of t. This contradicts
 the assumption that 6' was a point of density for V'. E

This content downloaded from 
������������128.114.223.193 on Tue, 05 Oct 2021 23:01:35 UTC������������ 

All use subject to https://about.jstor.org/terms



 ERGODICITY OF BILLIARD FLOWS 301

 Section 3

 In this section we will investigate the geometry of the flat metric induced by

 a quadratic differential. We will relate the divergence of r0(q) to the pinching of

 curves on M with respect to the flat metric gtr0(q). Our results are summarized

 in Proposition 2. This proposition will be used in the proof of Theorem 4 in the

 next section.

 Definition. Let QD = QD(k, X) be the space of quadratic differentials
 with area one on a surface M of Euler characteristic X with k singularities.

 Convention. A geodesic segment will be a geodesic interval with singular-

 ities as endpoints which contains no singularities in its interior.

 PROPOSITION 1. The set QDe consisting of quadratic differentials with no
 geodesic segment of length less than - is compact.

 Proof QD, is clearly closed in QD, for if qn -- q0 and q0 has a trajectory /
 of length less than - then the length of /3 is less than - for n large enough. It

 remains to be shown that QDe lies over a compact set in Rg. If not there is a

 sequence qn in QD, lying on Riemann surfaces Xr, going to infinity in Rg.
 Passing to subsequences we may assume Xn converges to a Riemann surface X.,
 with nodes acquired by pinching along a set of disjoint curves a1,..., ap (see
 [Be]). Again passing to subsequences, the qn can be assumed to converge
 uniformly on compact sets to an integrable q. on X.. This means q. has at
 most simple poles at the punctures. For any 8 there is a curve homotopic to

 punctures with q. length less than 8 which means there are curves homotopic to
 a, with qn length less than 8 for large n. This contradiction completes the proof.

 El

 This proposition shows that if r0(q) is divergent then, as t increases to

 infinity, the flat metrics corresponding to gtr0(q) possess arbitrarily short curves.
 In the remainder of this section we will show that we can choose short curves

 which are not crossed by other short curves.

 Definition. A subcomplex is a triangulation of a subset of M so that the

 vertices are singularities, the edges are geodesic segments and the faces are

 triangles which do not contain singularities. We do not require that the vertices

 of a triangle be distinct.

 We assume that if three sides of the complex bound a triangular region

 containing no singularities then that region is included in the complex.
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 LEMMA. The maximum number of segments in a subcomplex is 3(k - X).
 The maximum number of triangles is 2(k - X).

 Proof By adding a finite collection of segments to a subcomplex we may
 assume that the complementary regions are disks. These regions can be further
 subdivided into triangles. Thus we may assume that we have a decomposition of
 M into triangular regions with k vertices. Let e be the number of edges and let t

 be the number of triangles. Euler's formula gives k - e + t = X. Each edge is
 contained in 2 triangles and each triangle has 3 edges; thus 3t = 2e. These two

 equations imply that t = 2(k - X) and e = 3(k - X).

 Definition. An --subcomplex is a subcomplex in which each side has length
 less than or equal to e.

 Definition. A boundary edge is an edge which bounds less than two
 triangles.

 LEMMA. If - is less than ((k - X)31/2/2) -1/2 then an E-subcomplex has a
 boundary edge.

 Proof. A triangle with sides of length less than E has area less than c231/2/4.

 The number of triangles is less than 2(k - X). If E is smaller than the number
 above then the area of the c-subcomplex is less than one. If the c-subcomplex is
 not a triangulation of the entire surface then it must have some boundary edge.

 Definition. A subset X of M is convex if every path (not necessarily joining
 singularities) lying in X, which is homotopic relative to endpoints to a geodesic
 path, is homotopic to a geodesic path lying in X.

 Let B be a vertex in an --complex. The segments that contain B are
 cyclically ordered. Let AB and BC be adjacent edges. We say that ABC is an
 external angle if the segments AB and BC are not contained in a triangle ABC
 which is contained in the --complex.

 LEMMA. An c-subcomplex is convex if and only if the measure of each
 external angle is greater than T.

 Proof Denote the --complex by X. The second condition is the criterion for

 local convexity. It is clear that if X is convex then it is locally convex. To prove
 the converse choose a path in X homotopic rel endpoints to a geodesic segment
 not lying in X. Find the shortest path in this relative homotopy class that does lie
 in X. This path is a piecewise geodesic but not a geodesic. Where this path
 crosses a singularity we can measure the angle of bending on the right side of the
 path or on the left side of the path. The sum of these two angles will be the cone
 angle at the singularity. Since this path can be shortened, the measure of some
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 bending angle ABC at some vertex B is less than rT. The path can be shortened
 by moving it into the interior of the angle ABC. Since this shortened path is not
 contained in X there must be some sector of the angle ABC not contained in X.

 LEMMA. If a boundary edge of a connected --subcomplex is crossed by a
 geodesic segment of length less than C, where C > a, then there is a connected
 (C + -)-subcomplex with a larger number of simplices.

 Proof Let X be the --subcomplex. If X is not convex then we can find
 some boundary angle ABC with measure less than 7T. If there is a segment AC
 so that the region bounded by the segments AB, BC and AC is a disk with no
 singularities then add the segment AC and the triangle ABC. The length of AC
 is less than 2c. Now assume that this is not the case. Let Mr be the point on the

 segment AB such that the ratio of the length of BMr to the length of AB is r.
 Let Nr be the point on the segment CB such that the ratio of the length of BNr
 to length of CB is r. For small values of r we can construct a triangle MrBNr

 which contains no singularities. Let ro be the first r for which such a triangle
 cannot be constructed. The obstruction is a singularity P in the closure of the

 union of segments MrNr for r < ro. We can construct a segment BP. The
 segment BP cannot intersect any segment in the e-complex. Add BP to the
 e-complex. The length of BP is less than e.

 Assume that X is convex. If a geodesic segment crosses the boundary of X
 then at least one endpoint is not contained in X. Thus there is a singularity not
 in X within distance C of X. Consider the singularity closest to X. Let this point
 be P. Let AB be the segment in the boundary of X which contains the point
 closest to P. The triangle ABP cannot contain any singularities not contained in
 X; otherwise these would be closer to X than P. The triangle cannot contain any

 point Q in X for if it did by convexity it would contain the triangle ABQ. This
 would contradict the assumption that the closest point to P lies on AB. We can
 add the triangle ABP to the original subcomplex. The longest side of ABP is less
 than C + e. E

 Definition. Let - be less than C. A geodesic segment AB is (e, C)-isolated if
 it has length less than - and every geodesic that crosses AB in its interior has
 length greater than C.

 Definition. N( c, C) is the set of quadratic differentials which possess
 (e, C)-isolated curves.

 We consider (e, C)-isolated segments because there is a fixed bound to the
 number that can exist in any of the flat metrics. This follows from the fact that

 distinct (e, C)-isolated segments are disjoint and the number of disjoint segments
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 is less than or equal to 3(k - X). This bound plays a key role in the proof of
 Theorem 4 in the next section.

 We are now in a position to establish the main result of this section.

 PROPOSITION 2. Suppose that there is a set S of positive measure so that

 r0(q) is divergent for 0 E S. Then there are:
 1) a sequence of times Ti increasing to infinity,

 2) a sequence of subsets Si contained in S such that [(Si) > 8 > 0O
 3) a sequence of Ei > 0 converging to 0,
 4) a positive constant C such that:

 gTir0(q) E N(ci, C) for 0 E Si.

 The idea behind Proposition 2 is that if r9(q) is divergent then there will be

 times Ti after which there will always be a segment of length less than Ei in the
 corresponding metrics. Unfortunately, for a fixed C, the sets N(ei, C) do not
 form a neighborhood basis for infinity; so we cannot make the same statement
 for (C;, C)-isolated segments. However, by considering subsequences of times
 and subsets of S, we are able to make an analogous statement.

 Definition. Let U( c) be the set of quadratic differentials with a geodesic

 segment of length less than -.

 Definition. Let nj(q) be the maximum number of simplices in a connected
 c-subcomplex.

 Proof of Proposition 2. Choose a sequence , 0. By Proposition 1, the
 sets U(ei) have compact complements. We conclude that for each divergent ray
 r9(q) there are times Ti such that gtr0(q) e U(ci), for all t > Ti. The T, can be
 chosen so that this relationship holds for all 0 e S' where S' C S and [(S') >
 ((S)/2.

 We have now constructed:

 1) a sequence of times Ti increasing to infinity,
 2) a set S' of 0's with positive measure,

 3) a sequence of positive numbers ci converging to zero such that

 g~r9(q) E U(-i ) for 0 e Sf.

 In order to prove Proposition 2 we will construct sets Si C S' and find a constant
 C such that:

 gTir0(q) E N(Ei, C) for 0 E Si.

 Consider triples of sequences -i, TI, and Si with the property that Ei goes to
 zero, Ti goes to infinity, the measure of Si is bounded below and for 0 E Si the
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 surface gTirq is an element of U(ci). We can construct one such triple by taking

 c and Tj as above and taking Si = S for all i. For each such triple we can
 compute the minimum n(gTiroq). Choose a triple of sequences that maximizes
 this number. For each i and each 0 in Si let Ci, 0 be the length of the shortest
 geodesic segment that crosses a boundary segment of the c -subcomplex of

 gTi r0q.

 For each i, let mi be the median value of Ci, 0 on Si. That is, mi is some
 value so that the measure of points with greater or equal value is equal to the

 measure of points with smaller or equal value. We claim that mi > C for some
 C > 0. Suppose not. Then we could replace Si by the set of 0's with values of

 CO less than or equal to mi and replace ci by ci + mi. We could then choose a
 subsequence so that mi converged to zero. The new sequence of c,'s still goes to

 zero and the measure of the new sets Si is still bounded below. According to a
 previous lemma we could find E-subcomplexes with more simplices. This con-

 tradicts the maximality of our triple of sequences. Thus the set of mi is bounded
 below as claimed.

 If we replace Si by the set of 0 with Ci, ? mi > C we ensure that every
 geodesic segment crossing the -Complex has length at least C. Proposition 2

 follows.

 Section 4

 In this section we consider the case of divergent r0(q) and prove the

 following:

 THEOREM 4. The set of 0's such that r0(q) is divergent has measure zero.

 Proof The argument is by contradiction. We assume that there is a set of

 0's of positive measure for which r0(q) is divergent. With this assumption
 Proposition 2 applies. In this section we prove the following estimate:

 PROPOSITION 3. Fix C > 0. There are constants T, c1 and K such that, for

 t > T and C < C1, the measure of the set of 0 such that gtr0(q) is in N(c, C) is
 less than KC.

 When KC is less than the lower bound p for the measures of the sets Si
 given by Proposition 2, we have a contradiction. Thus no non-trivial set of

 divergent geodesics can exist. This completes the proof of Theorem 4, assuming
 Propositions 2 and 3. ?

 The remainder of this section is devoted to the proof of Proposition 3.

 Behavior of the length function: Let a be a geodesic segment. Denote by

 l(t, 0) its length with respect to the structure gtre(q). The segment a is vertical
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 in r9(q); i.e. h = 0 and v = 1(0, 0), for some value 0(a). Rotate the circular
 coordinate so that @(a) = 0. In these coordinates

 (1) l(t, 0) = v (etsin20 + e-tcoS20)1/2.

 Fix a value of t and choose E > 0. For each geodesic segment a, define two

 intervals I C J C (- 7T/2, 7T/2) with respect to the rotated coordinates for a.

 a= {0: sin 01 < vet/2)}

 aJ= {0: sin 01 < C/(2vet/2)}.

 LEMMA. There are constants -1, T and K, independent of a, such that for

 E < Ec and t > T we have ii(Ia)/i.(Ja) < KE. If I(t, 0 ) < for some 0, then it is
 less than C on Jp and is greater than - outside Ia.

 Proof If l(t, 0) < E for some 0, then

 vet//2lcos 01 ? ve-t/2 = l(t, 0) <

 since l(t, 0) attains its minimum at 0. From (1) we have

 l(t,0) < C/2 + for0 EJa.

 If we choose c1 = C/2 and E <c1 then l(t, 0) is less than C on Ja as desired.
 Let I' and Ja be the images of Ia and Ja under the sine function. If

 C 2ve"/2 < 1/2 then Jp is contained in the interval (- 1/2,1/2) and
 A(I')/A(J.I) < 2c/C. Since the function arcsin restricted to the interval
 (-1/2,1/2) is Lipschitz and has a Lipschitz inverse, it changes the lengths of
 intervals by a bounded amount. Thus we can choose a K depending on C such
 that p4(I,)/pA(Ja) < Kc, as claimed. To ensure that C/2vet/2 < 1/2, choose T
 such that C/2meT/2 < 1/2, where m is the length of the shortest geodesic
 segment on q. Since v ? m and t > T, the inequality holds, which completes
 the proof of the lemma.

 Proof of Proposition 3. Fix t > T and - < c1 so that the above lemma
 applies. Consider all geodesic segments a which are (e, C)-isolated with respect
 to gr0(q) for some 0. For each a let Ia be the smallest interval of 0's which
 contains the set of 0's for which a is (e, C)-isolated. Then Ia C I C J where
 I and Ja are defined as above.

 Construct a new open interval Ja as follows. The left-hand endpoint of h
 will be halfway between the lefthand endpoints of Ia and Ja. The right-hand
 endpoint of ja will be halfway between the right-hand endpoints of Ia and Ja.
 The point of this construction is the following fact. If ja and J1/ intersect then

 either J intersects or Jintersects Assume that J, intersects I. We can
 find a 0 in the intersection so that /3 is (e, C)-isolated with respect to gtra(q).
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 Now with respect to gtr3(q), a has length less than C and /3 cannot cross any
 geodesic segment of length less than C. Thus the interiors of a and /3 are
 disjoint. By a previous lemma the maximum number of disjoint geodesic seg-
 ments is G = 3(k - X).

 We conclude that no 0 can lie in more than G sets Ja. The sum of the
 lengths of the intervals Ja is at most TG. The sum of the lengths of the intervals

 ha is at most 2 G. Thus by the above lemma, the sums of the lengths of the
 intervals I. is less than cK27rG. The intervals I. cover the set of O's for which
 gr,(q) is in N(E, C); so Proposition 3 follows. E

 Section 5

 The collection of polygonal regions in R2 with n vertices and a given
 combinatorial type can be identified with a subset of R2 . We define the space of
 billiard tables to be the set of all such regions topologized as a disjoint union of
 subsets of R2n. Now let X be an arbitrary closed set of the space of billiard
 tables. For a rational table x E X, let Fx c 0(2) be the group generated by
 reflections in the sides.

 PROPOSITION 4. Let X be a space of billiard tables as above with the
 property that for any number N the set of rational tables x in X with card(Fx) 2 N

 is dense. Then the ergodic billiard tables in X form a dense G,.

 If we take X to be an appropriate space of right triangles then this
 proposition implies the existence of a dense GQ of right triangular ergodic billiard
 tables as claimed in the introduction.

 Proof of proposition. It suffices to prove the result for any compact subset
 of X. Without loss of generality we may assume that X is compact and
 contained in a single copy of R2n. Each x E X corresponds to a polygonal region

 QX of the plane. Assume that the area of each Qx is one. Let PX be the bundle
 with base space X so that the fiber, P, over x is the phase space of the
 corresponding billiard table Q, Note that PX can be thought of as a subset of
 X x R2 x S'. Let pix be the product of the area measure on Qx with the unit
 Haar measure on S'. Let pt denote the billiard flow on PX.

 Choose a sequence of continuous functions fl, f2 ... on PX which when
 restricted to PXI for any x E X, are dense in L2(Px). We make the further
 assumption that each fi respects the natural identifications on each Px in the
 sense that if v is an outward pointing vector on the boundary of a polygon and
 v' is the corresponding inward pointing vector then f(v) = f(v'). Let E(i, n, T)
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 be the set of x E X for which

 fz [-fTIf (Ot(z)) dt - ffdIuX] dtLx <-1

 Let E(i, n) = U' IE(i, n, T), and let E = nl, fln E(i, n).
 The set of x e X for which 4t Px is ergodic is precisely E (cf. [0-U]). We

 will prove that:

 1) The sets E(i, n, T) are open and

 2) For a given i and n there is an N such that E(i, n) contains all rational

 tables x for which card( x) > N.
 The first statement implies that the sets E(i, n) are open. The second

 statement implies that the sets E(i, n) are dense in X. Since E is the countable
 intersection of sets E(i, n), it is a G8 and the Baire category theorem implies

 that E is dense in X. Statement 1) is a consequence of the following lemma.
 Statement 2) follows from Lemma 5.2.

 LEMMA 5.1. Let T > 0 be fixed. Let f be a continuous function on PX
 respecting the identifications. Then

 fs lf|T f((jz)) dt - ffdlix |]dtLx

 depends continuously on x.

 Proof For y E X let a(y) be the integral of f over Py. We begin by
 proving that a(y) is a continuous function of y. Let x E X and let E > 0 be

 given. Let N1 C X be a neighborhood of x. For each y E N1, Qy is a subset of
 the plane. Let Q1 be the intersection of the sets Qy where y E N1. Let
 M = sup If 1. By choosing N1 sufficiently small we may assume that the area of

 Q1 is at least 1 - e/3M. Let P1 = Q, X S' and let I, be the product of
 Lebesgue measure on Q, with unit Haar measure on S1. We can view N1 X P1
 as a subset of PX.

 Let b(y) = Ip . p, fly, p) du 1. The continuity of b follows from the con-
 tinuity of f. Furthermore b is close to a:

 a(y) -b(y) I < | fdtu < tl(Py yxPi) M <3-

 Let N2 c N1 be a neighborhood of x consisting of points y for which Ib(x) -

 b(y)I < E/3. Then for y E N2 we have

 Ia(x) - a(y)I <Ia(x) - b(x)I +Ib(x) - b(y)I +?b(y) - a(y) < c.
 This completes the proof of the continuity of the function a.
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 We replace the function f by the function f defined as follows: For zEc Pye
 f(z) = f(z) - a(y). Then the proof of the lemma reduces to the proof of the
 continuity of the following function:

 C(X) = T Atz)) dt d t,

 We begin by introducing an auxiliary function. Let vert(y) denote the set of

 vertices of Qy. Let 7T be the projection from Py to Qy. For z E Py C PX define

 l(z) = inf d(mpj(z), v).
 v E vert( y)

 If 0,(z) is not defined for some t between 0 and T then we take 1(z) to be 0.
 Since 'r(o4(z)) is a smooth function of t and z when 4,(z) is defined, it is easily
 seen that 1 is a smooth function of z.

 We will prove the continuity of the function c. Fix x E X. Let - > 0 be
 given. Choose a neighborhood N1 of x such that the area of the set Q1 is at least

 1 - e/1OM, where Q1 and M are defined as before.
 The gradient of 1 at z e Px where 1(z) = 0 is non-zero. So, by the implicit

 function theorem, the set of vectors z in Px for which 1(z) = 0 has codimension

 1 in P, Thus it has measure zero. Let C8 be the set of z E Px for which
 1(z) ? 6. Choose 8 small enough that the measure of C8 is at least 1 - e/1OM.
 Let D8 consist of pairs (p, v) E R2 X S1 such that p E Q1 and (p, v) E C8.

 Since Q1 X S' is contained in Px for all x c N1, we can identify N, x D8
 with a subset of PX in a natural way. Let 1(y) be the infimum of 1(z) for

 z E (Py n N1 x D8). Now 1 is continuous and 1(x) = 6. We can find a neighbor-
 hood N2 C N, so that for y e N2, 1(y) is positive. Let d(y) denote the integral

 d(y) = X D8 [! f(+t(z))dt] dAy.
 G~yXD8L T

 Since f(tt(z)) is a continuous function of t and z for t E [0, T] and x E N2 X
 D,, the integral varies continuously. We can find a neighborhood N3 of x on
 which d varies by less than c/3. The difference between d(y) and c(y) is less
 than e/3. For y E N3,

 Ic(x) - c(y) I < Ic(x) - d(x)| + Id(x) - d(y)| + Id(y) - c(y)I < c.

 This completes the proof of the continuity of c and the proof of the lemma.

 LEMMA 5.2. Fix n > 0 and a continuous function f on PX. Choose 8 > 0 so

 that if the distance between two points 01 and 02 is less than 8 then If(to) -
 f( 02) I < 1/2n. (Recall that PX is compact.) Let N be greater than 2/8. Let Qx
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 be a rational polygon with I 2I N. Then for T sufficiently large

 pJ [T ffft(z)) dt - |fd dar djLay x 2n

 Proof Since x is fixed we will drop the subscripts from P, Q, F and I. For
 0 in S1 let u(O) = I/ I IFI z E Mf(z) dA, where dA is the area measure on MO.
 For z e P let u'(z) = u(O) where z e Mo. For z in P let VT(z) =
 1/TfoTf(Ot( z)) dt. Let int f denote the integral of f with respect to ,1. The
 quantity which appears in the lemma is the norm in the space L2(p) of the
 function VT - int f.

 Claim. limT -IIVT - U'I = 0

 Remark. It is in the proof of this claim that essential use is made of the
 central result, Theorem 1.

 The surfaces Mo are parametrized by 0 E S'1/F. We evaluate the norm by
 integrating first with respect to MO, then with respect to 0.

 IIVT - E lII ( TI (Z - u'(z)) dA dO ]

 Let wT(O) = [l/IFIJzEMO(VT(Z) -U(Z))2 dA]1/2. Then

 IIVTU'II = S'/F ] ~~1/2 [l | As Es1/r ( )

 For a given 0 the ergodicity of fkIMo implies that inMT oWT(0) = 0. Theorem 1
 implies ergodicity for almost all 0. Since the functions WT are bounded and

 converge pointwise almost everywhere to 0 they converge to 0 in norm. This
 completes the proof of the claim.

 Claim. IIu' - intfl ? <1/2n.

 The norm of the function u' - int f in L2(p) is equal to the norm of the
 function u - int f in L2(Sl). Let 01 be a point in the circle at which u assumes
 its maximum value M. Let 02 be a point at which u assumes its minimum value
 m. Note that u is constant on the orbits of F. The distance between neighboring

 points in a F orbit is less than 2/ IF I < 2/N < &. By replacing 02 by some y02,
 where y E F, we may assume that the distance between 01 and 02 is less than &.
 It follows from the continuity assumption on f that since 01 and 02 are closer
 than 8 then Iu(01) - u(02)1 is less than 1/2n. Since u is defined by averaging
 f, the integral of f over P is equal to the integral of u over S1. Thus
 m < intf< M; hence Iu(0) - intfl < 1/2n and IIu - intfll < 1/2n. This
 completes the proof of the claim.
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 We now complete the proof of the lemma. Choose T sufficiently large that

 IIVT - u'II < 1/2n. Then

 IIVT -int fl ? IIVT - U'11 + Iu' - int fli < 1/2n + 1/2 = 1/n.
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