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1

INTRODUCTION

A lot of work has been done in recent years concerning closed 

geodesics on Riemannian manifolds. In the case that the manifold has 

a "large” fundamental group such as a surface of genus g £ 2, the 

existence of infinitely many such geodesics is easily demonstrated by 

exhibiting one in each free homotopy class. The work referred to above 

is concerned with showing the existence of infinitely many prime geo

desics on any compact, closed manifold.

It is our aim in this thesis to study the asymptotic distribution 

of the lengths of periodic geodesics, and consequences thereof. The 

results we obtain have interesting applications to number theory as 

well as to the behavior of eigenvalues of the Laplace Beltrami operator 

on Riemannian manifolds.

There are three different methods of getting hold of the closed 

geodesics. The first is to use the fact that these geodesics are 

critical points of the energy integral on a path space. Secondly, by 

viewing these geodesics as periodic orbits of the geodesic flow, one may 

use methods of topological dynamics. Finally, in the case of constant 

curvature, the lengths of the closed geodesics can be identified through 

exact trace formulas such as the Selberg Trace Formula. We will be con

cerned mainly with the latter two methods, as they are more useful as 

far as asymptotics of the lengths is concerned.

The relevant trace formulas are introduced in Chapter 1. These 

include the Poisson Summation Formula, Selberg Trace Formula, and what 

we call the Duistemaat-Guillemin summation formula. These may all be 

viewed as a computation of the trace of the operator exp(i/At) in two ways.
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2

We also introduce in this chapter the notions of the geodesic flow and 

the different entropies associated with it.

Let cPq be the set of closed geodesics on M. For y e cP^ let 

r(y) be its length. For x > 0 define ir(x) = #{y e cPQ: t(y) $ x}.

We are interested in the behavior of tt(x) as x -+■ °°. We know it (x)-»•»,

as "x-*-00 for "almost" any manifold (Klingenberg [18]). It may happen 

that tt(x) =«> for some x (e.g., the two sphere). However, in the 

case of a Riemannian manifold with all sectional curvatures negatives, 

we have the following remarkable result of Margulis [22].

..hxC0Theorem: tt(x) ~   for constants c and h.-----------  x
Here h is the topological entropy. An asymptotic expansion for

tt(x) will be called a Prime Geodesic Theorem.

In view of this prime geodesic theorem, it is of interest to study 

the dependence of the entropy on the geometry of the manifold. In 

Chapter 2, monotonicity and continuity theorems aTe proved for the 

topological entropy. If X is the "bottom" of the spectrum of the 

Laplacian as it acts on the universal covering of the Riemannian mani

fold whose entropy we are considering, then the following is true

h2
X £ ~2~ , where h = topological entropy of the geodesic flow.

In the case of constant curvature, these are equal, but they need 

not be so in general. We also prove the following estimates for the 

"natural measure" entropy ĥ :
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3

(n-1) i /M /=F00 dA(x) Cn-1) (£ /M -k’(x)dA(x))% .

In particular for a surface of genus g £ 2

^ /T(xT dA(x) $ f ( ̂ {g-l) ) k = curvature .

(See Theorem 2.3 for definitions of k+,k“.) In constant curvature all 

of the above are equal.

Together with h i  h^ the above gives us another lower bound for 

h; in terms of the geometry.

When the curvature is constant, say equal to minus 1, and we are 

in dimension two, we have h= 1 and we may seek higher order terms in 

the prime geodesic theorem. In the case of a compact surface (closed), 

Selberg and later Hejhal and Huber, determined such higher order

asymptotics. The situation, in the noncompact but finite volume sur

face, is complicated by the presence of continuous spectrum. By methods 

different to the above authors we prove the prime geodesic theorem for 

finite volume surfaces. Our method consists of first obtaining some 

estimates on the spectrum of the Laplace Beltrami operator via partial 

differential equations, and then applying a chosen one parameter 

family of test functions. This method avoids the use of the Selberg 

Zeta function; however, that method can also be made to work, as is 

indicated in Selberg [27 ]. If 0 = Aq < Aj $ ... £ < 1/4 are

the discrete eigenvalues of A on the surface, and if it = / k  -"l/4,m m
m = 0,...,k, then the prime geodesic theorem reads

\
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4

tt(x ) = Li(ex) + Li(e(1/2 + tj)) + ... + Li(e(1/2 + tk)X) + 0(x2 e3/4 X )

fu 1where Li(u) = J t dt.

We continue Chapter 3 by discussing the asymptotics of the lengths 

of prime geodesics where we impose conditions on the primes to be 

counted. Indeed, this part is analogous to prime ideals of algebraic 

number theory and their splitting in extension fields. Ke develop the 

following analogue of the Dirichlet-Chabotarev density theorem. Let 

S be a closed compact surface of constant curvature -1. Let W be 

a finite regular cover of S degree n. Let G be the group of cover

transformations of W over S. Let us call a prime geodesic on any of 

the surfaces simply a prime. To each prime on S we associate a con-

jugacy class in G, depending on the cover transformation that this

prime induces. For a fixed class C of G we define to be

the number of primes which induce C and whose length is less than x.

We obtain the asymptotics of tt̂ Cx), (up to order x " e ^4 X as usual)

in terms of the irreducible representations of G. If one view the 

above in terms of Selberg Zeta functions, one finds the analogue of the 

Artin conjectures is true.

We conclude Chapter 3 by making some eigenvalue estimates which 

are needed later. Specifically, let G(y) be one of the "Hecke groups", 

that is, G(y) is generated by

1z --2  « rry = 2 cos (-) , q £ 3, q e 2 . 
z -+■ z + y q
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5

G(y) is a discrete subgroup of PSL(2,]R) and acts on the upper
U

half plane H. For the surface S = we prove that the firstH »Jy
discrete eigenvalue X̂  is not less than one quarter. This theorem 

for q=3 is well known. The prime geodesic theorems of this chapter 

may be developed in hyperbolic n-space by similar methods.

The next chapter deals with applications to number theory. The 

connection comes when one tries to find the lengths of the prime geo- 

desics for the surfaces where F(N) is the principal congruence

subgroup of PSL(2,Z), of level N. In these cases we have a nice 

interpretation in terms of number theoretic quantities.
2Let D = {n e Z, n > 0, n 5 0 or 1 mod 4, n i  m }.

For d e D, let e  ̂ be the fundamental solution of the Pellian
2 2equation, x - dy - A .  Let h(d) be the number of inequivalent

classes of primitive quadratic forms of discriminant d. The lengths

of the periodic geodesics in the case of the modular group are the

numbers 2 log with multiplicity h(d), d e D.

The numbers h(d) and log have been a mystery ever since

Gauss introduced them in Section 304 of his Disquestiones Arithmetica.

Gauss, seeking to understand the behavior of these class numbers h(d),

formed averages of h over the sets {l,2,...,x} HD, but noticed

that these have no regular behavior as a function of x. He did point

out that <J>00 = \  h(d) log e, does have an asymptotic expansion.
de x d

This was later proved by Siegel:

2 3/
0>00 ® TgfcsJ x 0(x log x̂  •
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6

Also through the work of Siegel we understand the behavior of 

h(d) log (although not effectively). It seems difficult to 

separate the quantities h(d) and log ed. In Chapter 4 we compute 

the averages of h(d) over the exhausting family of sets {d: ed £x}. 

The results may be summarized as follows:

( i )  I  h (d )  = Li(x2) + L(x3/2 ( lo g  x)2)
{dre^Sx}

(ii)  -- ±— —  I  h(d)=i|Ml2Ll+ o(x2/5 +e), Ve > 0
|{d:e,£x}| {d:e,£x}

(i) follows from our considerations about closed geodesics, while

(ii) follows from (i) and some arguments on asymptotics of the number 

of solutions to a diophantine inequality.

The above shows that on the average the class number is about the 

size of the unit. The question of the finer behavior of h(d), raised 

by Gauss, seems as difficult today as it has been for many years.

Similar considerations for T(p) where p is a prime, give rise 

to asymptotic averages of h(d) over certain subsets of D. The 

precise statements may be found in Theorem 4.34. The asymptotics in 

these cases are closely related to the conjecture that X̂  £ 1/4 for 

the groups T(p).
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CHAPTER 1. TRACE FORMULAES AND OTHER PRELIMINARIES

In this chapter we will state and give outlines of proofs of 

various summation formulas that are basic to our later work. We 

begin with the simplest of these.

1.1 Poisson Summation Formula

If SQR) denotes the Schwartz class on F, and f e SQR), then

I  f(n) = I  f(n) . 
n e Z n e Z

In the language of distributions if S = T <$ . where
n e Z

6x = point mass at x, one has

S = S .

There are many ways of proving 1.1. We show here how we may 

obtain 1.1 by computing the trace of "the wave operator".

Consider the Cauchy problem

(a) 

1.2

2 29j£ _ 3j£ 
2 ~  2 3x 3t

(b) <p(xf0) = 6 Cy)
(c) <?t(x,0) = 0

(x,t) eS'xj.

Define the operator Wt by (Wt̂ >) (x) = ^(x,t) where 

^(x,0) = <?(x), v>t(x,0) = 0 and ^ is the solution to 1.2(a).

The solution <p(x,y,t) of 1.2 is the fundamental solution of 

the "half" wave equation and is the distributional kernel of Wt«
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We may find <p explicitly by first finding the fundamental 

solution to 1.2(b) on R and then averaging. On R the solution 

is easily constructed by waves moving to the left and right.

<P(x,y,t) -  {<5(x+n-y-t) + 6(x+n-y+t)} .
n

Now comes the basic idea (which goes back to Selberg (1956)):

One computes the trace of W in two ways. On the one hand,

1 f27r 1Trace(W ) = j -  <p(x,x,t)dx = I  j  [6(n+t) + 6(n-t)]
J0 neZ

= I  «n(t) •
neZ

On the other hand, using eigenvalues and eigenfunctions of the operator 
d2 1— =- on S , we have 
dx

«p(x,y,t) = I  cos (2Trnt) e2lTinx ‘ 2iriny
n

Therefore,
2tt o • t

< P (x ,x ,t)dx = I  e 71111 = I  6 (t). Equating
0 neZ neZ

these gives 1.1.

Let us examine the extent to which the above arguments may be 

carried out in a general setting. Let M be a compact C°° manifold 

without boundary, equipped with a smooth metric. The Laplace Beltrami 

operator on functions is given in local coordinates by
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A* = 7 T  ~ T  ( ^ g 1:i
I g 3xJ 3x

where ds2 = g^^dx1dx̂ . Let dA = /g  dx'...dxn denote the correspond-
2ing volume element. The operator A is self adjoint in L (M,dA) and 

has a spectral decomposition on eigenfunctions with eigenvalues

A^ by which we mean

* V n  '

Furthermore, the functions {<£n) are an orthonormal basis for
2L (M,dA). The An are real and non-negative. 0 = Aq < Aj S ••

X -*■ 00 as n ■+ oo. n
As before, consider the Cauchy problem

32y? .— = A#
3t

1,3 ^(0,x,y) = 6y(x)

^(0,x,y) = 0

Define (W^f)(x) to be the solution at time t to the equation
23— y = A<£, V’CO.x) = f(x), (0,x) = 0. Then 1.3 is the distribution
3t^ 1
kernel of Wt< We may write

W = cos ( /E  t) .

As before, one may calculate the trace of W in terms of eigenvalues 

as follows:
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1 .4 Trace(W) = ^(t,x,x)dA(x)
T m

Can we compute 

in- some other way?

= I coso/r t)
n=0 n

£(t,x,x)dA(x), or better still ^(t,x,y),
M

1.5 Selberg Trace Formula

If the space in question has some homogeneous properties, then 

^(t,x,y) can often be calculated explicitly. For example, this is 

true in a rank one symmetric space and in particular in hyperbolic 

n-space.

Let Hn+* = {(x,y): x e IRn, y > 0 e R}. By hyperbolic n-space 

we mean Hn+* equipped with the metric

ds = 2y

This gives rise to a Riemannian space of constant sectional curvature. 

It is a rank one space. The Laplace Beltrami Operator

2
- y -(4 4 * 4 ]I. av .3xx 3xn 3y

-  ( n - l ) j r  £
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11

affords an invariant differential operator which generates the 

algebra of invariant operators. The space M which was considered 

earlier, will in this case be Hn/r, for some discrete group r of 

isometries of H11, which acts discontinuously.

One may obtain the fundamental solution to the problem (notice 

slightly modified)

2 2 3 V  * , n -T— 7  * A<p+ (7 ) p  
3t

1.6 <P(x,0) = 0

V?t(x,0) = f(x)

by first obtaining the solution on Hn and then automorphizing 

(averaging over ). One may then proceed as before to compute the 

trace of W in two ways. This is carried out for n=l in Lax- 

Phillips (p.236). There are no added difficulties for higher n, in

deed n even is somewhat easier than n odd. For another proof (due 

to Selberg) of the formula which comes out of the above computation, 

we refer to Cohen and Sarnak [5].

We state the resulting formula in the case of the hyperbolic 

plane.

We assume that M = H/r is compact and smooth (i.e. T has no

fixed points in H). Also, let Xn be eigenvalues of A, and let

r = ± A  - 1/4 , and let CP be as in the introduction,n n

1.7 Theorem (Selberg)
OO ALet g e ® even, and g is Fourier transform, then

j
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12

I  g O O  = — jj f f l  f r  tanh(7rr)g(r)dr + 2 I — --------°-------- g(T(y))
n ■’-00 y e  CP sinh(Tz(Y))

where t(Yq) is the length of the primitive geodesic covered by y .

The appearance of the last term above is the key to the use of 

the trace formula to count prime geodesics. The above may be viewed 

as a type of duality between the lengths of the closed geodesics and 

the eigenvalues of the Laplace Beltrami operator.

1.8 More General Trace Formulas

In the case of a compact negatively curved manifold, one may 

try to calculate the fundamental solution of the wave equation as 

described in the case of a homogeneous space. This could be done by 

calculating the fundamental solution on the universal covering M and 

then "automorphizing". Of course, there is no hope of an explicit 

solution. However, one may construct progressing wave solutions about 

a point. These will give approximations to the fundamental solution, 

to as high a degree of smoothness as desired. Having done so, one 

"automorphiz.es" and takes the trace. The result is of course not an 

explicit trace formula, but one.which identifies singularities. A 

calculation along these lines was carried out by Donnelly [6]. The 

result is a special case of the work of Duistermaat and Guillemin.

1.9 Theorem

Let M be a compact manifold of negative curvature, then the 

following identity holds as distributions
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Where R e Ljqc away from zero, and is the Poincare map

about y, which we describe in the next section.

When M is of arbitrary curvature, the situation is quite a lot

more difficult. One needs to use the full force of the theory of 

Fourier Integral Operators to construct a paramatrix.

1.10 The Geodesic Flow

Let M be as usual. Denote by SM the sphere bundle to M,

that is, the space of linear elements (x,9), x e M, 6 e T̂ M,

||81| = 1. We denote by ir the natural projection of SM on M. An 

element v e SM defines a geodesic Yv(t) where Yy(0) = v (and 

so Yy(0) = ^(v)). The geodesic flow <p on SM is defined by

0t (v )  = Yy ( t )  .

It is clear that for each t, <p is a diffeomorphism of SM. 

Also, the periodic orbits of correspond to the closed geodesics 

in M. The tangent bundle to M, TM, has a natural Riemannian 

structure given by the connection map K which we describe.

For v e TM and £ e Ty(TM) let Z: (-e,e) -*■ TM be a curve 

with initial vector £. Then a = tTqZ: (-e,e) M, and one defines' 

K(C) = Z'(0), where 1 denotes covariant differentiation.
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K: T(TM) -*■ T(M)

and

(TM)v = ker dir © ker K

= vertical © horizontal space;

see Eberlein [8].

The Riemannian structure on TM is given by £,n e (™)v

< ? » n >  =  < d T T C ,d irn > 7rv +  < K £ , K t i >1Ty .

We give SM the Riemannian structure induced as a submanifold 

of TM. Let y denote the corresponding Riemannian volume measure.

The following "Louiville Theorem" is well known.

1.20 Proposition

The flow preserves the measure y.

We will call y the canonical volume measure on SM.

1.21 Poincare Map

Let y be a periodic orbit of the geodesic flow y?t, i.e., for 

x e y there is T such that ¥?T(x) = x. Now (<PT)*: T ->• T and1 I X X
this linear map clearly has the flow direction at x as a one 

dimensional eigenspace. The linear Poincare map is defined to be the 

induced map on the normal space at x. We denote it by P . This 

definition depends on the choice of x e y, but choosing another 

point simply gives a conjugate to P . An exact expression for P̂  

may be obtained by integrating a Jacobi differential equation around y .
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15

We conclude this chapter by introducing the notion of entropy 

of a flow. This number will play a vital role in the prime geodesic 

theorems.

1.22 Entropy

Let be a one parameter family of smooth diffeomorphisms of 

a compact manifold M. Let d (•, •) be a metric (distance function) 

on M. For T > 0 define

Td (x,y) = max d(v> x,y> y) .
0 £ t £ T

TLet N(T,e) be the minimal number of e balls in the d metric 

needed to cover M. The topological entropy h, of this flow, is 

defined by

1.23 h = lim lim .
e -*■ 0 T-* °°

One can show that this definition is independent of the choice of 

d(*,«). Indeed, one can give a definition purely in terms of open sets, 

as was done in Adler [ 1  ], where the notion of topological entropy 

was first introduced.

For example, one checks easily that for the geodesic flow on 

the sphere bundle of a standard sphere, or flat torus, one has h=0.

We shall see later, however, that for the geodesic flow on a surface 

of genus greater than or equal to two (and any Riemannian structure), 

h > 0.
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There is also the notion of measure entropy ĥ . Suppose

that y is a positive probability measure on M which is in

variant. In this case one has the usual definition of h U pJ),y ^t
see e.g., Sinai [30].

There is the following relation between h^ and h:

h = sup h
y v

where the sup runs over all ip invariant probability measures y.

See Goodwyn [10].

Finally, we would like to state a result of Pesin and Margulis, 

which gives an "exact" formula for h^ when y is a Riemannian 

volume measure.

1.24 Liapunov Exponents

Let <pt  be as in the beginning of 1.22. Fix a Riemannian 

structure on M. For v e T^M define

+   log||d*> (v) ||
X (v,£) = lim ---- -----  .

Now it is clear that y assumes at most n values on T^M 

(where n = dim M). There is a filtration

L1( O C L 2(C)C...CL.( a (0 = T?M 

where x+(v»?) = **(?) > °* saY for ve LA(?) (?) • Let
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k.CC) = dim L.(5) - dim L.^CC). Finally, set XCC) = 1 ^ ( 5 ^  (5).

1.25 Theorem (Pesin, Margulis)
2If {̂ .J is C and y is a Riemannian measure invariant 

under , then

h  =  f  x C ? ) d y ( C )  •

For a proof see Pesin [26].
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CHAPTER 2. ENTROPY

We recall the definition of the prime geodesic counting 

function

tt(x) = #{y e CPQ: x(y) S x}

where CPp is the set of primitive closed geodesics, and x(y) is 

the length of y. It is difficult, without further assumptions, to 

give upper bounds for the growth of tt(x). This is so since, as we 

saw in the introduction, tt(x) may be infinite for some finite x. 

However, lower bounds may be obtained for certain manifolds.

For simplicity, consider a compact closed surface M of genus 

g £ 2 (the results here will apply equally well to manifolds which 

carry metrics of negative curvature in every section). We prove the 

following conjecture due to Sinai [31].

2.1 Proposition

For any metric on M one has

l i m  l o g  t t ( x )  >  0
X ->-oo x

Proof

We will see later that for a metric Oq on M, of negative 

curvature one has

U -  108 . 6 , 0 .
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