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Abstract
In this paper we start a new approach to the uniformization problem of Riemann
surfaces and algebraic curves by means of computational procedures. The following
question is studied: Given a compact Riemann surface S described as the quotient
of the Poincaré upper half-plane divided by the action of a Fuchsian group, find
explicitly the polynomial describing S as an algebraic curve (in some normal form).
The explicit computation given in this paper is based on the numerical computation
of conformal capacities of hyperbolic domains. These capacities yield the period
matrices of S in terms of the Fenchel-Nielsen coordinates, and from there one gets to
the polynomial via theta-characteristics. The paper also contains a list of worked-out
examples and a list of examples—new in the literature—where the polynomial for the
curve, as a function of the corresponding Fuchsian group, is given in closed form.

0. Introduction
The uniformization theorem of Koebe and Poincaré states that any Riemann surface
has a universal covering conformally equivalent to either the Riemann sphere P

1, the
complex plane C, or the Poincaré upper half-plane H. One of the consequences is that
any smooth complex algebraic curve C of genus g > 1 is conformally equivalent to
H/G, where G ⊂ PSL2(R) is a Fuchsian group. Conversely, any compact Riemann
surface is isomorphic to an algebraic curve. Hence, any curve of genus g > 1 may be
described in two ways, either by an equation or by a Fuchsian group. Going explicitly
from one description to the other is, in either direction, a difficult problem. This is
the classical uniformization problem. In this paper we study the direction from the
Fuchsian groups to the curves. We also provide a large number of new examples, all
in genus 2, where the correspondence is given in exact form.

Since H has a natural hyperbolic metric and this induces one on the correspond-
ing curve C, one can reformulate the problem by asking how one relates explicitly
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equations for C with the hyperbolic metric on C. This is the approach we have taken,
and we present here a method based on the computation of period matrices in terms
of the hyperbolic metric.

If H/G has specific symmetries such that the associated algebraic curve is hy-
perelliptic and real, then the period matrix may be expressed in terms of conformal
capacities of certain geodesic polygons. This reduces the computations to quite simple
matters, and for this reason we have restricted this paper to real hyperelliptic curves,
although the method is somewhat more general. For the conformal capacities we use
approximation by harmonic polynomials, and combining this with Theta characteris-
tics we obtain an equation of the curve in terms of the Fenchel-Nielsen coordinates
of H/G.

While experimenting with this method, we noticed a large number of examples
that suggested that the correspondence between the Fenchel-Nielsen coordinates and
the equation was expressible in exact form. For many of these we have proved that
this is indeed the case by using a sort of uniformization “in families,” that is, by
exhibiting one-parameter families of curves which are algebraic with respect to the
natural projective structure of the moduli space and which at the same time are
defined by algebraic relations between the Fenchel-Nielsen coordinates. A list of
exact correspondences and also some “possibly exact” correspondences, for which
we have no proof, can be found in the final section.

1. Preliminaries
As a general reference we use [FK]; for more specific results on real curves we use
[GH] or [SS], and for results on hyperbolic surfaces we use [Bu].

Let C be a smooth complex algebraic curve. Then C is naturally endowed with
the structure of a Riemann surface. Conversely, any compact Riemann surface is
conformally equivalent to an algebraic curve. By a classical theorem of Weil, C can
be defined by real polynomial equations if and only if C admits an antiholomorphic
involution σ . Moreover, the polynomials can be chosen such that σ is the involution
induced by complex conjugation. Hence a real curve is a couple (C, σ ), where C is
a complex curve and σ is an antiholomorphic involution on C. We also say that σ
is a real structure on C. If the antiholomorphic involution is clear, for example, if C
is a curve already defined by polynomials with real coefficients and σ is complex
conjugation, we simply say that C is a real curve. Note, however, that such a real
curve may have additional real structures.

If C is of genus g, then the fixed-point set of σ , C(R) can have at most g + 1
connected components, and in this case we say that C is an M-curve. If C is an
M-curve, then C � C(R) has two connected components, each homeomorphic to a
sphere with g + 1 disks removed.
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Let (C, σ ) be a real curve of genus g � 2, and assume C is hyperelliptic with
C(R) �= ∅. Then we can define (C, σ ) by an equation of the form y2 = P(x), with P
a real polynomial of degree either 2g+2 or 2g+1, with distinct roots and such that σ
is induced by complex conjugation.

For such curves we note the following fairly trivial facts.
(i) (C, σ ) is an M-curve if and only if all the roots of P are real.
(ii) C has two real structures. If the first is (C, σ ), then the second is (C,−σ),

where −σ is σ composed with the hyperelliptic involution. If an equation for the first
is y2 = P(x), then an equation for the second is y2 = −P(x). We say that the real
components of (C,−σ) are the pure imaginary components of (C, σ ). For M-curves
the intersection points of the real and pure imaginary components are precisely the
Weierstrass points of C.

By the uniformization theorem any algebraic curve of genus g > 1 carries a
unique hyperbolic metric compatible with the underlying conformal structure. The
terms geodesic and isometry should always be understood with respect to this metric.

The next lemma is the starting point of this paper.

lemma 1.1
Let (C, σ ) be a real hyperelliptic M-curve of genus g > 1. Then the union of the real
and pure imaginary components of (C, σ ) separates C into four isometric geodesic
right-angled (2g + 2)-gons.

Conversely, let P be a hyperbolic geodesic right-angled (2g + 2)-gon. Glue P

and a mirror image of P so as to obtain a sphere S with g + 1 disks removed.
Let S ′ be a mirror image of S . Glue S and S ′ in a way that preserves the mirror
symmetries. Then the surface thus obtained is a real hyperelliptic M-curve.

Proof
Since σ is antiholomorphic, it is an orientation-reversing isometry. This implies that
the real components of (C, σ ) are simple closed geodesics. The same is true, of
course, for the pure imaginary components. To see that they intersect at right angles,
note that −σ commutes with σ , so that σ fixes the pointwise invariant geodesics
of −σ and vice versa. As σ and −σ are reflections along these sets, the sets intersect
each other orthogonally. The rest of the first half of the lemma follows from the above
considerations.

Call S the Riemann surface obtained in the second half. By construction S has 2
orientation-reversing symmetries, σ and σ ′. Since by construction σ is an orientation-
reversing isometry, it defines an antiholomorphic involution. Also by construction, the
real curve (S, σ ) has g + 1 real components and hence is an M-curve. On the other
hand, τ = σ ◦ σ ′ defines a holomorphic involution. The fixed points of τ are the
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vertices ofP, and since there are 2g+2 of these, τ is an hyperelliptic involution.

Remark 1.2
The preceding discussion does not extend immediately to genus-1 curves since an
elliptic curve does not carry a natural hyperbolic metric. On the other hand, an elliptic
curve with one point removed does, and we can do the following.

LetC be an elliptic curve defined by an equation of the form y2 = x(x−1)(x−a),
a ∈ R, and let p be the point at infinity. Then C̃ = C � {p} has a natural hyperbolic
metric. The union of the real and pure imaginary components ofC separate C̃ into four
isometric quadrangles with three right angles and one zero angle. (The corresponding
vertex is a parabolic point.)

Conversely, starting with four copies of a hyperbolic quadrangle with three right
angles and one zero angle, we can glue these so as to obtain an “ideal” pair of pants
with two geodesic boundary components, β1 and β2, of equal length and a third of
length zero. Gluing β1 and β2 with zero twist, we obtain an elliptic curve with one
point p removed. For the same reasons as in the proof of Theorem 1.1, this curve
has a real structure with two real components. Hence it has an equation of the form
y2 = x(x − 1)(x − a), a ∈ R. Moreover, since by construction point p is at the
intersection of a real and a pure imaginary component, we can choose a so that
point p is the point at infinity.

2. The standard period matrices of real hyperelliptic M-curves
Let (C, σ ) be a real hyperelliptic M-curve of genus g. Then by the considerations in
Section 1, (C, σ ) can be defined by an equation of the form

y2 = P(x) =
2g+1∏
i=1

(
x − xi

)
, with all xi ∈ R and x1 < · · · < x2g+1. (2.1)

We associate with it a standard form of the corresponding period matrices as follows.
Since P is nonzero in the upper half-plane H and the latter is simply connected,

we can choose on H a determination of the square root
√
P(x). Obviously we can

extend this determination to R and even to strips below the ]xi, xi+1[’s. We take the
one that is positive on [x1, x2]. It is then negative on [x3, x4], positive on [x5, x6], . . . ,
and so on; it is also pure imaginary with positive imaginary part on ] − ∞, x1], pure
imaginary with negative imaginary part on [x2, x3], . . . , and so on.

Let π : C → P
1 be the projection (x, y) �→ x. Let βi = π−1([x2i−1, x2i])

for 1 � i � g, βg+1 = π−1([x2g+1,∞[), γ1 = π−1(] − ∞, x1]), and γi+1 =
π−1([x2i , x2i+1]) for 1 � i � g. For x ∈ H, the map x �→ (x,

√
P(x)) is a conformal

inverse of π .
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We choose on these cycles (which correspond to the real and pure imaginary
components) the orientation defined by the map x �→ (x,

√
P(x)) and x increasing.

At the points (xi, 0), y is a local coordinate on C, and from this it is easy
to compute the intersection numbers of the βi’s and γj ’s. We have (γi · βi) = 1
and (γi+1 · βi) = −1, for 1 � i � g, and (γ1 · βg+1) = −1, all other intersection
numbers being zero. Hence if αi = −∑i

k=1 γk , then {α1, . . . , αg, β1, . . . , βg} defines
a symplectic basis of H1(C,Z), that is, one for which the intersection matrix is(

0 −1g
1g 0

)
,

where 1g is the g × g identity matrix.

lemma 2.2
Let (C, σ ) be a real hyperelliptic M-curve defined by an equation of the form in (2.1).
Let

√
P(x) be the above determination of the square root on H, and set

A =
(
−
∫ x1

−∞
xj−1 dx√
P(x)

−
i−1∑
k=1

∫ x2k+1

x2k

xj−1 dx√
P(x)

)
i,j

, B =
(∫ x2i

x2i−1

xj−1 dx√
P(x)

)
i,j

.

Then Z = A · B−1 is a period matrix for C with �e(Z) = 0.

We say that a period matrix obtained in this way is a standard period matrix of (C, σ )
or, more precisely, the standard period matrix associated to equation (2.1).

Proof
Let ωj = xj−1 dx/y. Then it is well known that the ωj ’s form a basis of the space 1C
of holomorphic 1-forms on C. Since {α1, . . . , αg, β1, . . . , βg}, αi’s and βi’s as above,
is a symplectic basis of H1(C,Z), this means that if we replaceA and B by (

∫
αi
ωj )i,j

and (
∫
βi
ωj )i,j , Z is a period matrix of C. But clearly

∫
αi

ωj = −2
∫ x1

−∞
xj−1 dx√
P(x)

− 2
i−1∑
k=1

∫ x2k+1

x2k

xj−1 dx√
P(x)

and

∫
βi

ωj = 2
∫ x2i

x2i−1

xj−1 dx√
P(x)

.

Finally, we note that B is real while A is pure imaginary, and this ends the proof.

lemma 2.3
Let (C, σ ) be as in Lemma 2.2, and let the βi’s be as above. Let
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y2 =
2g+1∏
i=1

(
x − x′

i

)
, with x′

i ∈ R and x′
i < x

′
i+1,

be another equation defining (C, σ ), and let β ′
1, . . . , β

′
g+1 be constructed in the same

way as the βi’s, but from the x′
i’s.

Then the ordered set {β ′
1, . . . , β

′
g+1} is either a cyclic permutation of the ordered

set {β1, . . . , βg+1} or a cyclic permutation of {−βg+1, . . . ,−β1}.

Proof
To simplify notation, call (C′, σ ′) the curve defined by the second equation. The hy-
pothesis is now that (C, σ ) and (C′, σ ′) are isomorphic. Let ψ : (C, σ ) → (C′, σ ′)
be an isomorphism. Then, since the hyperelliptic involution is in the centre of the
automorphism group of an hyperelliptic curve, ψ also induces an isomorphism be-
tween (C,−σ) and (C′,−σ ′). This implies that ψ sends real components to real
components and pure imaginary components to pure imaginary components. Since
an isomorphism respects the intersection form, this means that if ψ transforms βi
into β ′

j (resp., −β ′
j ), then it must transform γi into γ

′
j or −γ ′

j+1 (resp., −γ ′
j or γ

′
j+1),

where the γ ′
i ’s are again constructed in the same way as the γi’s and γg+2 = γ1.

Hence the cyclic order is either respected or reversed. To see that in the first case the
orientations are preserved while they are reversed in the latter, recall how the cycles
are oriented and recall the fact that ψ is induced by a projective transformation of
P
1, taking the xi’s to the x′

i’s. (Hence the only possibilities are, in fact, βi goes to β
′
j

and γj goes to γ ′
j or βi goes to −β ′

j and γj goes to −γ ′
j+1.)

corollary 2.4
Let (C, σ ) be as in Lemma 2.2, and let Z and Z′ be two standard period matrices of
(C, σ ). Then Z = MZ′ tM , whereM is in Gg , the subgroup of GLg(Z) generated by
the matrices

N1 = −



0 0 0 · · · 0 1
...
... 1 0

0 0 1
...

0 1 0 · · · 0 0
1 0 0 · · · 0 0

 and N2 =


0 0 · · · 0 −1
1 0 · · · 0 −1
0 1 0 −1
...

. . .
...

0 0 1 −1

 .

Proof
Let ψ , the β ′

i’s, and the γ
′
i ’s be as in the proof of Lemma 2.3.

Now recall that by construction we have βg+1 = −β1 − β2 − · · · − βg and
γg+1 = −γ1− γ2 − · · · − γg . This, together with Lemma 2.3, implies that the matrix
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of ψ∗ (the induced mapping), in the bases {αi, βi} and {α′
i , β

′
i}, is of the form(

tN−1 0
0 N

)
for a matrix N in Gg .

Applying this, with M = N−1, to the construction of Z, we have Corollary 2.4.

Remarks 2.5
(i) It is easily seen that the group Gg is isomorphic to the dihedral group Dg+1.
(ii) Let Z = (zij )i,j . Then the diagonal elements of N2Z tN2 are

zgg, z11− 2z1g + zgg, z22− 2z2g + zgg, . . . , zg−1,g−1− 2zg−1,g + zgg.
(Recall that Z is symmetric.) Those of N22Z

tN22 are

zg−1,g−1 − 2zg−1,g + zgg, zg−1,g−1, z11 − 2z1,g−1 + zg−1,g−1, . . . ,

and so forth.
This means that we can recover the coefficients of Z from the diagonal elements
of the matrices Nk2Z

tNk2 .

3. Period matrices of real hyperelliptic M-curves in terms of capacities
Let (C, σ ) again be a real hyperelliptic M-curve defined by an equation of the form
in (2.1), and let notation be as in Section 2.

Let B and Z be as in Lemma 2.2, and write tB−1 = (cij )i,j and Z = (zij )i,j .
Let

fi : z �−→
∫ z

x1

∑
cij x

j−1 dx√
P(x)

.

By the choice of the determination of
√
P(x), this defines holomorphic functions fi

on the simply connected domain formed by H and the vertical strips below the
]xi, xi+1[’s.

By the choice of the cij ’s we have

fi
(
x2i
)−fi(x2i−1) = 1, fi

(
x2j
)−fi(x2j−1) = 0, for 1 � i, j � g and i �= j.

(3.1)
Recalling the definition of the αi’s and the fact that γ1 = −γ2 − · · · − γg+1, we also
have

g∑
j=i
fi
(
x2j+1

)− fi
(
x2j
) = zii . (3.2)
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Define ui = �e(fi) and vi = �m(fi). These are harmonic functions on H. To
obtain the boundary behaviour of the ui’s, note that since

√
P(x) is pure imaginary

on the intervals [x2i , x2i+1] and ] − ∞, x1], we have by (3.1),
ui(x) = 0 on ] − ∞, x1] and on

[
x2j , x2j+1

]
, for j < i,

ui(x) = 1 on
[
x2j , x2j+1

]
, for i � j.

(3.3)

Writing x = ξ + √−1ζ with ξ and ζ real, we have from the Cauchy-Riemann
equations

∂ui(x)

∂ζ
= −�m

(
∂fi(x)

∂ξ

)
. (3.4)

This holds, in particular, for x ∈ ]x2k−1,2k[, k = 1, . . . , g and x ∈ ]x2g+1,∞[. Since
the imaginary part of fi is constant on these intervals, we get

∂ui(x)

∂ζ
= 0 for x ∈ ]x2k−1, x2k[ and ]x2g+1,∞[. (3.5)

Now recall that the capacity of a harmonic function h on a domain M is c =∫
M

‖∇h‖2dM and that by Green’s theorem we can rewrite this as

c =
∫
∂M

h · ν[h] dµ,

where ν[h] is the derivative of h with respect to the outward pointing unit normal
vector field. In our situation, where M = H, the upper half-plane, and h = ui , the
corresponding capacity is

ci =
∫

H

‖∇ui‖2 dξ dζ = −
∫

R

ui(t) · ∂ui
∂ζ
(t) dt. (3.6)

Applying this and recalling (3.2), (3.3), (3.4), and (3.5), we find the following propo-
sition.

proposition 3.7
Let (C, σ ) be defined by y2 = ∏

(x − xi), 1 � i � 2g + 1, xi < xi+1. Let
Z = √−1(yij )ij be the standard period matrix associated to this equation, as in
Lemma 2.2.

Let ci be the capacity introduced in (3.6) for ui , harmonic, satisfying conditions
in (3.3) and (3.5).

Then, for 1 � i � g, ci = yii .

corollary 3.8
Let (C, σ ) be as in Proposition 3.7, and let P be the hyperbolic (2g + 2)-gon
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associated to (C, σ ) as in Lemma 1.1. Then a standard period matrix of (C, σ )
can be computed in terms of capacities of harmonic functions with mixed boundary
conditions on P.

Proof
There is a conformal map sending P to H ∪ {∞} in such a way that its vertices go
to x1, x2, . . . , x2g+1,∞. We label the sides of P successively β̃1, γ̃1, β̃2, . . . , γ̃g+1,
such that β̃1 goes to the interval [x1, x2], γ̃1 to [x2, x3], and so on.

We observe that yii is also the capacity ci of the harmonic function hi on P

which is uniquely defined by the boundary conditions

ν[hi] = 0 on β̃1, . . . , β̃g+1,
hi = 0 on γ̃1, . . . , γ̃i ,

hi = 1 on γ̃i+1, . . . , γ̃g+1.

Now let κ ∈ {1, . . . , g}, and set for i = 1, . . . , g+1, β̃i[κ] = β̃i−κ , γ̃i[κ] = γ̃i−κ
(subscripts modulo g + 1). This is just a cyclic renumbering of the sides. It induces
a renumbering βi[κ] = βi−κ , γi[κ] = γi−κ , i = 1, . . . , g + 1, and provides the
symplectic basis {α1[κ], . . . , αg[κ], β1[κ], . . . , βg[κ]} with corresponding standard
period matrixZ[κ]. A simple check using the relation βg+1[κ] =−β1[κ]−· · ·−βg[κ]
shows that βj =∑ nij [κ]βi[κ] with (nij )i,j = Nκ2 . Hence Z[κ] = Nκ2Z

tNκ2 .
The diagonal elements of Z[κ] = √−1(yij [κ])i,j are the capacities ci[κ] of the

harmonic functions hi[κ] on P which are defined as the hi’s but with respect to
the numbering β̃1[κ], γ̃1[κ], . . . ; that is, the hi[κ]’s are the harmonic functions with
respect to the boundary conditions

ν[hi[κ]] = 0 on β̃1, . . . , β̃g+1,
hi[κ] = 0 on γ̃1−κ , . . . , γ̃i−κ ,
hi[κ] = 1 on γ̃i+1−κ , . . . , γ̃g+1−κ

(3.9)

(subscripts modulo g+1). Using Remark 2.5, we can easily compute the coefficients
yij ’s from these data. Explicitly, we have for 1 � i < j � g,

2yij = yii + yjj − yj−i,j−i[g + 1− i].

Remark 3.10
All of the results of this section generalize to the case g = 1 in even simpler form
since for g = 1 we only have to compute one capacity of the quadrangle introduced
in Remark 1.2 to obtain the period of the corresponding real elliptic curve.
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4. Computing the equation for the curve associated to a hyperbolic (2g+ 2)-gon
We detail in this section the method for computing an equation of the curve associated
to a (2g+2)-gon as in Lemma 1.1 and Remark 1.2. The numerical part in our approach
reduces to the computation of the conformal capacities of plane domains.

After testing various finite element methods based on Euclidean and hyperbolic
triangulations, we found that the approximation of a harmonic function by harmonic
polynomials—that is, functions of the form

∑
rk(ak cos(kx)+bk sin(kx))—is by far

the fastest and the most accurate method. Moreover, it is simple to implement and
uses only standard subroutines. For the achieved accuracy we refer to Section 8.

The practical computation of an approximating harmonic polynomial on a poly-
gon domain with respect to given boundary conditions is as follows. First we realize
the polygon as a domain in the unit disk and distribute a finite number of points along
the boundary, more or less equidistantly (with respect to the Euclidean metric). Im-
posing that the polynomial satisfy the boundary conditions in these points gives us a
family of linear equations in the ak’s and bk’s. We overdetermine the system and solve
it in the sense of least squares using a standard SVD (singular values decomposition)
subroutine. Using the Green-Riemann formula, we get the capacity of the function
directly out of the ak’s and bk’s.

From the capacities we can, using the method described in Section 3, recover a
standard period matrix Z of the curve. Since the curve is hyperelliptic, we can use
Theta characteristics to obtain an equation of the curve (see, e.g., [FK, pp. 348–350]).

For genus 2 the domain is a hyperbolic hexagon H in the unit disk with sides
labeled l1, l̂3, l2, l̂1, l3, l̂2, in that order (see Figure 1).

l̂1

l2 l̂3

l1

l̂2l3

Figure 1

We assume that the sides {li} (resp., {̂li}) are mapped by the inclusionH ↪→ C into
the real and pure imaginary components, respectively. The three capacities c1, c2,
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and c3 are computed corresponding, respectively, to u1, which is zero on l̂1, 1 on l̂2
and l̂3; u2, which is 1 on l̂2, zero on l̂1 and on l̂3; and u3, which is 1 on l̂3, zero on l̂1
and on l̂2. From Section 3 we conclude that the matrix

Z = i

 c1
1

2

(
c1 + c2 − c3

)
1

2

(
c1 + c2 − c3

)
c2


is a period matrix of C.

To compute an equation for C, let

ϑ
[
2α
2β

]
(Z) =

∑
n∈Zg

exp
(
πi t(n+ α)Z(n+ α)+ 2πi t(n+ α)β)

for 2α and 2β in Z
g , and set

x1 =
(
ϑ
[
0 0
0 0

]
(Z) · ϑ[ 0 10 0 ](Z)

ϑ
[
1 0
0 0

]
(Z) · ϑ[ 1 10 0 ](Z)

)2
,

x2 =
(
ϑ
[
0 0
0 1

]
(Z) · ϑ[ 0 10 0 ](Z)

ϑ
[
1 0
0 1

]
(Z) · ϑ[ 1 10 0 ](Z)

)2
,

x3 =
(
ϑ
[
0 0
0 0

]
(Z) · ϑ[ 0 00 1 ](Z)

ϑ
[
1 0
0 0

]
(Z) · ϑ[ 1 00 1 ](Z)

)2
.

(4.1)

Then y2 = x(x − 1)(x − x1)(x − x2)(x − x3) is an equation for C (see, e.g., [FK,
pp. 348–350]).

The generalization of this method for g > 2 is straightforward.
Actually, this method also works in the hyperbolic genus-1 case as considered in

Remark 1.2 and is in fact even simpler.
LetQ be a hyperbolic quadrangle with three right angles and with one zero angle,

that is, with one vertex at infinity. We denote by l and l̂ the two sides ofQ with finite
length.

Let C be the real curve associated with Q such that the inclusion map Q ↪→ C

sends l and l̂ upon a real and a pure imaginary component, respectively.
We let τ be the capacity of the harmonic function u on Q which is zero on l̂, 1

on the opposite side of l̂, and which has zero normal derivatives on the remaining two
sides.

By the considerations of Section 3, there is a conformal map ψ1 sendingQ onto
the rectangle (0, 1, 1+ iτ, iτ ) and sending vertices to vertices. Let

x1 = exp(πτ)

16

∞∏
n=1

(
1+ exp (− (2n− 1)πτ))8(

1+ exp(−2nπτ))8 . (4.2)
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l̂

l

Figure 2

Then it is well known (see, e.g., Z. Nehari [Ne]) that there exists a conformal
map ψ2 sending the rectangle (0, 1, 1 + iτ, iτ ) onto the upper half-plane and such
that ψ2(0) = 0, ψ2(1) = 1, ψ2(1+ iτ ) = x1, and ψ2(iτ ) = ∞.

But this means that y2 = x(x − 1)(x − x1) is an equation for C, and that if h is
the projection (x, y) �→ x, then the composition

Q ↪→ C
h−→ P

1

is equal to ψ2 ◦ ψ1 and maps Q conformally onto the upper half-plane H.
For the numerical computation of τ , we placeQ as in Figure 2. Let, as before, ak

and bk be the coefficients of the harmonic polynomial. Then all bk’s and also all a2k’s
are zero and the capacity becomes

τ =
∑
(−1)ka2k+1|p|2k+1,

where p is the nonzero end point of side l̂. In this case the computation is particularly
fast and efficient.

With a variant of this method we can also handle “half-twists.” We describe this
here in the case g = 1; for g = 2 we refer to the end of Section 7.

We first need some remarks on real elliptic curves with one real component.
Let C1 be the elliptic curve defined by the lattice91 generated by 1 and 1/2+iµ,

µ ∈ R, µ > 0. Then C1 is a real curve with one real component, the image in C1
of the horizontal lines R + niµ, n ∈ Z. C1 has also one pure imaginary component,
the image of the vertical lines n/2+ iR, n ∈ Z. We note also that we can normalize
equations of such curves in the form y2 = (x2 + 1)(x2 − α), α ∈ R, α > 0.

Now letC2 be the elliptic curve defined by the lattice92 generated by 1/2 and iµ.
The inclusion91 ⊂ 92 yields a double covering of C2 by C1. Such a double covering
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is easy to describe in terms of equations. If the equation of C1 is as above, then the
equation of C2 is y2 = x(x+ 1)(x− α), the covering map being (x, y) �→ (x2, xy).

h′ h′′
h

b b′ a′ a

Figure 3

Of course, the procedure can be reversed, and this is what we are going to do.
Thus, consider again the quadrangles and the “ideal” pair of pants described in

Remark 1.2, but assume this time that we glue the two boundary components β1
and β2 with a half-twist. We again obtain a torus with one point removed. It also
has an obvious orientation-reversing symmetry with a connected fixed-point set and
hence corresponds to a real genus-1 curve with one real component. Call C this curve.

Looking at two copies of the quadrangle, the situation is as in Figure 3. Note
that in the corresponding Riemann surface the points a, a′, b, b′, . . . are identified
and so are the points h, h′, h′′, . . .. For the orientation-reversing symmetry we can
take the one induced by reflection along the (h, b) geodesic, which is the same as the
one induced by taking reflection along the (a, h′) geodesic. In this case the real part
consists of the images of these two geodesic arcs. The pure imaginary components
consist of the images of the geodesic arcs (a, h) and (b, h′). But now we are exactly in
the situation described above. (In terms of fundamental parallelograms the situation
is as in Figure 4.)

h′ h′′

h′′′h

b b′

a′a

Figure 4
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In particular, if τ is the capacity of a harmonic function on the shaded area a,
h, b, h′, with boundary conditions zero on (a, h′) and 1 on (b, h) and zero normal
derivative on the two remaining sides, then the period of the curve C obtained with a
half-twist is 1/2+i(τ/2). Using the Legendre map we can easily find from this period
an equation for C. We can also use the above remarks to simplify the computations.
Namely, let x1 be associated to τ as in (4.1), and let α = x1 − 1. Then an equation
of C is y2 = (x2 + 1)(x2 − α).

5. A D5 action on a subspace of the real genus-2 moduli space
In Section 6 we construct various examples of real genus-2 curves with three real
components for which the uniformization is given exactly. The construction uses
group actions and curve families which have an explicit algebraic description in
terms of the coefficients of equations of algebraic curves. At the same time these
actions and curve families have an explicit description that is algebraic in terms of
the Fenchel-Nielsen coordinates. In this section we describe the group actions.

We use the following notation. The group of all orientation-preserving automor-
phisms of a real curve C = (C, σ ) preserving the real structure σ is denoted by
Aut+σ (C). The real moduli space of the real genus-2 curves with three components is
denoted by M (2,3,0)

R
. As usual we write C ∈ M (2,3,0)

R
to say that the isomorphism

class of C belongs toM (2,3,0)
R

. For any finite group G we letM (2,3,0)
R

(G) denote the

subspace of all C ∈ M (2,3,0)
R

with G ⊂ Aut+σ (C).
LetP be the moduli space of pairs of pants. Taking for any P ∈ P the Schottky

double, we get a Riemann surface SP with a real structure.
This sets up a natural isomorphism betweenP andM (2,3,0)

R
, and we identifyP

withM (2,3,0)
R

.
An element P in P consists of two copies of a hyperbolic geodesic hexagon.

The lengths of the sides of the hexagon listed in cyclic order are denoted by l1, l̂3, l2,
l̂1, l3, l̂2. We also denote by hi the common orthogonal between li and l̂i .

The hexagon is determined up to isometry by l1, l2, l3. The lengths of the remain-
ing quantities are given by the following formulas, where we abbreviate ui = cosh(li),
i = 1, 2, 3:

cosh2
(
l̂i
) =

(
ui + ui−1ui+1

)2(
u2i−1 − 1)(u2i+1 − 1) (5.1)

(subscripts modulo 3),

cosh2(hi) = u21 + u22 + u23 + 2u1u2u3 − 1
u2i − 1 . (5.2)

P is obtained by pasting the hexagons together along the sides l̂i and has boundary
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geodesics of lengths 2l1, 2l2 ,2l3. We use the unordered triple {l1, l2, l3} as a set of
coordinates for P ∈ P. Since the pasting that gives SP has zero twist, {l1, l2, l3} also
serves as a set of coordinates for SP .

Equations for the elements inM (2,3,0)
R

are written either in the form

y2 = x(x − 1)(x − x1)(x − x2)(x − x3) (5.3)

as earlier, with x1, x2, x3 real, or in the form

y2 = (x−d)(x+1)(x−c)(x−a)(x−1)(x−b), d < −1 < c < a < 1 < b. (5.4)
Now letP2 be the subspace ofP formed by the pairs of pants with two boundary

components of equal length. From the point of view of hyperbolic geometry, P2

may be characterized as the set of elements in P with coordinates {l1, l2, l2}. To
describe P2 in terms of coefficients of equations, we note that any P ∈ P2 has an
orientation-preserving involution with one fixed point. It induces an involution of SP
with exactly two fixed points. Since there is also the hyperelliptic involution, we have

Z/2× Z/2 ⊂ Aut+σ (SP ). Conversely, any C ∈ M (2,3,0)
R

with Z/2× Z/2 ⊂ Aut+σ (C)
is obtained in this way. Hence, under the above identification of P with M (2,3,0)

R
,

the subspace P2 ⊂ P is identified with M (2,3,0)
R

(Z/2 × Z/2) and we identify P2

withM (2,3,0)
R

(Z/2× Z/2).
In (5.4) we may choose the constants such that the fixed points of the nonhy-

perelliptic involution are (0,±y). This allows us to normalize equations of elements
inP2 in the form

y2 = (x2 − a)(x2 − 1)(x2 − b), with 0 < a < 1 < b. (5.5)

Using Lemma 2.3, it is straightforward to show that two curves C, C′ with equations
in this form are real isomorphic if and only if a = a′ and b = b′. Each element inP2

is therefore represented by a unique equation, so that we have here a one-to-one
correspondence fromP2 to the set of all (a, b) ∈ R

2, with 0 < a < 1 < b.
Our first action is ϕ : P → P defined by ϕ : {l1, l2, l3} �→ {̂l1, l̂2, l̂3}. From

the point of view of equations, this corresponds to replacing the curve defined by
y2 = P(x) by the one defined by y2 = −P(x). If the equation of the curve is
written in the form of (5.4), then this action can also be described by (a, b, c, d) �→
(1/b, 1/a, 1/d, 1/c) or by (a, b, c, d) �→ (−1/c,−1/d,−1/a,−1/b) (which in cer-
tain cases is more useful). This defines an algebraic action onM (2,3,0)

R
. Of course, ϕ

restricts to an action on P2 = M (2,3,0)
R

(Z/2 × Z/2). In terms of the coordinates
(a, b) based on (5.5), ϕ : P2 → P2 is described by

ϕ : (a, b) �−→
(
1

b
,
1

a

)
, 0 < a < 1 < b. (5.6)
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To describe the action of ϕ in terms of the Fenchel-Nielsen coordinates we recall
that for P ∈ P2, l2 = l3 and all twist parameters are zero. Hence the action can be
described by

(l1, l2) �−→ (
l̂1, l̂2

)
, l1, l2 > 0, (5.7)

where l̂1 and l̂2 are given by (5.1).

Remarks 5.8
(i) From the point of view of complex isomorphism classes, the action of ϕ is of

course trivial. The action on real isomorphism classes, however, is nontrivial,
and we see that even from the complex point of view it is quite important (see
Remark 5.18).

(ii) The action of ϕ can also be described in terms of period matrices. If we take the
standard periodmatrix as in Section 3, then the action isZ = iY �→ (i/ det(Y ))Y .
The fixed space is simply characterized by the condition det(Y ) = 1.

To describe the next action we begin with the genus-3 curves given by an equation

y2 = (x2 − x21
)(
x2 − x22

)(
x2 − 1

x21

)(
x2 − 1

x22

)
, (5.9)

where 0 < x1 < x2 < 1. We denote this family by C2. Any curve C ∈ C2 has the
two fixed-point free involutions

j1 : (x, y) �−→ (−x,−y), j2 : (x, y) �−→
(
1

x
,
−y
x4

)
.

Each ji fixes two components of the real part of C and interchanges the other two.
The mapping ψ1 : (x, y) �→ (x2, xy) is the natural projection onto the quotient

of C by j1 and thus is a twofold covering from C to the genus-2 curve <1 given by
the equation

y2 = x
(
x − x21

)(
x − x22

)(
x − 1

x21

)(
x − 1

x22

)
.

We write <1 = γ1(C). To obtain an equation for <1 in the normal form in (5.5),
we use the transformation z �→ ((1 − x21 )/(1 + x21 ))((1 + z)/(1 − z)), z ∈ P

1. The
equation becomes

<1 : y2 = (x2 − a)(x2 − 1)(x2 − b),
where

a =
(
1− x21
1+ x21

)2
, b =

(
1− x21
1+ x21

1+ x22
1− x22

)2
. (5.10)
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Note that the mapping (x1, x2) �→ (a, b) is one-to-one onto ]0, 1[ × ]1,∞[. This
mapping is just the coordinate description of γ1, and thus γ1 : C2 → P2 is a
bijection.

The mapping ψ2 : (x, y) �→ (x + 1/x, (x2 − 1)y/x3) is the natural projection
onto the quotient ofC by j2 and is a twofold covering fromC to the curve <2 = γ2(C)

given by the equation

y2 = (x2 − 4) (x2 −
(
x1 + 1

x1

)2)(
x2 −

(
x2 + 1

x2

)2)
.

The normal form for <2 is obtained via the transformation z �→ (x2/(x
2
2 + 1))z and

becomes
<2 : y2 = (x2 − a′)(x2 − 1)(x2 − b′)

with

a′ =
(
2x2
x22 + 1

)2
, b′ =

(
x2
(
x21 + 1)

x1
(
x22 + 1)

)2
. (5.11)

Here too the mapping (x1, x2) �→ (a′, b′) is one-to-one onto ]0, 1[×]1,∞[ and is the
coordinate description of γ2.

Altogether γ1 and γ2 are one-to-one correspondences from C2 ontoP2, and we
obtain an action η = γ2◦γ−1

1 : P2 → P2 which in terms of coefficients of equations
is given by

η : (a, b) �−→
(
b − a
b
,
b − a
b(1− a)

)
. (5.12)

Note that η2 = Id .
To describe η in terms of the Fenchel-Nielsen coordinates, we need to introduce

some notation. We let π : C → P
1 be the projection (x, y) �→ x and consider the

following cycles on C:

λ1 = π−1
([

− 1

x2
,−x2

])
, λ′

1 = π−1
([
x2,

1

x2

])
,

λ2 = π−1([− x1, x1]), λ′
2 = π−1

(]
− ∞,− 1

x1

]
∪
[
1

x1
,∞
])
,

µ1 = π−1
([

− 1

x1
,− 1

x2

])
, µ′

1 = π−1
([
1

x2
,
1

x1

])
,

µ2 = π−1([− x2,−x1]), µ′
2 = π−1([x1, x2]).

(5.13)

Furthermore, we let µ3, µ′
3 be the two cycles that project upon the imaginary axis,

and let ν, ν′ be the cycles that project upon the unit circle.
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All these cycles are geodesics with respect to the hyperbolic metric. This follows
from the fact that each of them is part of the fixed-point set of some orientation-
reversing automorphism of C.

Consider the quotient maps ψi : C → <i , i = 1, 2, where the equations of <1,
<2 are in the normal form in (5.5). The images under ψi of the cycles are as follows,
where πi : <i → P

1 is again the natural projection:

π−1
1

([− √
b,−1]) = ψ1(µ1) = ψ1

(
µ′
1

)
,

π−1
1

([− 1,−√
a
]) = ψ1

(
λ′
2

)
,

π−1
1

([− √
a,

√
a
]) = ψ1(µ3) = ψ1

(
µ′
3

)
,

π−1
1

([√
a, 1
]) = ψ1

(
λ2
)
,

π−1
1

([
1,

√
b
]) = ψ1

(
µ2
) = ψ1

(
µ′
2

)
,

π−1
1

([√
b,∞] ∪ ]− ∞,−√

b
]) = ψ1

(
λ1
) = ψ1

(
λ′
1

)
.

(5.14)

Furthermore,ψ1(ν) andψ1(ν′) are the cycles on <1 which project upon the imaginary
axis. Here too all cycles are geodesics.

On <2 we have the geodesics

π−1
2

([− √
b′,−1]) = ψ2

(
µ1
) = ψ2

(
µ2
)
,

π−1
2

([− 1,−√
a′ ]) = ψ2

(
λ1
)
,

π−1
2

([− √
a′,

√
a′ ]) = ψ2(ν) = ψ2

(
ν′),

π−1
2

([√
a′, 1

]) = ψ2
(
λ′
1

)
,

π−1
2

([
1,

√
b′ ]) = ψ2

(
µ′
2

) = ψ2
(
µ′
1

)
,

π−1
2

([√
b′,∞] ∪ ]− ∞,−√

b′ ]) = ψ2
(
λ2
) = ψ2

(
λ′
2

)
,

(5.15)

plus the geodesics ψ2(µ3) and ψ2(µ′
3) which project upon the imaginary axis.

In <1 the geodesics ψ1(λ2) and ψ1(λ′
2) have the same length, so that this length

is 2l2 and the length of ψ1(λ1) is 2l1. (Recall that all lk are half-lengths.) As
ψ1 | λ1 is one-to-one and ψ1 | λ2 is two-to-one, this yields 2l1 = length(λ1),
2l2 = (1/2)length(λ2).

In <2 the geodesics ψ2(λ1) and ψ2(λ′
1) have the same length, so that this length

is 2l′2 and the length of ψ2(λ1) is 2l′1. Here ψ2 | λ2 is one-to-one and ψ2 | λ1 is
two-to-one, so that 2l′1 = length(λ2), 2l′2 = (1/2)length(λ1).

Figure 5 shows one of the four octagons defining C drawn as a hyperbolic poly-
gon. The quotients <1 and <2 are obtained from the two distinguished hexagons.

Altogether we get the description η : (l1, l2) �→ (2l2, l1/2). We display this
more transparently writing (l1, l2, h1, l̂1, l̂2) instead of (l1, l2). The description of η
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λ′
1 λ1

µ′
2 µ2λ2

ν

µ3

µ′
1 λ′

2
µ1

Figure 5

then becomes η : (l1, l2, h1, l̂1, l̂2) �→ (2l2, l1/2, l̂1/2, 2h1, l̂2), and that of ϕ is ϕ :
(l1, l2, h1, l̂1, l̂2) �→ (̂l1, l̂2, h1, l1, l2).

Setting ψ = ϕ ◦ η, we get the following result.

proposition 5.16
The transformations ϕ : (l1, l2, h1, l̂1, l̂2) �→ (̂l1, l̂2, h1, l1, l2) and ψ : (l1, l2, h1, l̂1,
l̂2) �→ (2h1, l̂2, l̂1/2, 2l2, l1/2) generate an action of the dihedral group D5 on P2.
This induces an algebraic action of D5 on M (2,3,0)

R
(Z/2 × Z/2), defined by ϕ :

(a, b) �→ (1/b, 1/a) and ψ : (a, b) �→ (b(1 − a)/(b − a), b/(b − a)) when the
equations of the curves are written in the form y2 = (x2 − a)(x2 − 1)(x2 − b),
0 < a < 1 < b.

We summarize in Table 5.17 the action of D5.

Remarks 5.18
(i) From the point of view of real isomorphy classes this action of D5 is effective in
the sense that if the curve is not in one of the fixed spaces of the involutions ϕψk

(see Section 6), then no two curves in the orbit are real isomorphic (for the obvious
reason that a real isomorphism is an isometry and sends real components to real
components). From the point of view of complex isomorphy classes, we note that
although ϕ acts trivially and η is of order 2, ψ is of order 5. (This follows from
the fact that a complex genus-2 curve has at most two distinct real structures with
three real components (see, e.g., [Na]).) Hence in each orbit not intersecting the fixed
subspaces we find five nonisometric surfaces.
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Table 5.17

Id
(
l1, l2, h1, l̂1, l̂2

)
(a, b)

ψ

(
2h1, l̂2,

l̂1

2
, 2l2,

l1

2

) (
b(1− a)
b − a ,

b

b − a
)

ψ2
(̂
l1,
l1

2
, l2, 2̂l2, h1

) (
b − 1
b − a ,

1

a

)
ψ3

(
2l2, h1, l̂2, l1,

l̂1

2

) (
1

b
,
b − a
b(1− a)

)
ψ4

(
2̂l2,

l̂1

2
,
l1

2
, 2h1, l2

) (
b − a
b
,
b − a
b − 1

)
ϕ

(
l̂1, l̂2, h1, l1, l2

) (
1

b
,
1

a

)
ϕψ

(
2l2,

l1

2
,
l̂1

2
, 2h1, l̂2

) (
b − a
b
,
b − a
b(1− a)

)
ϕψ2

(
2̂l2, h1, l2, l̂1,

l1

2

) (
a,
b − a
b − 1

)
ϕψ3

(
l1,
l̂1

2
, l̂2, 2l2, h1

) (
b(1− a)
b − a , b

)
ϕψ4

(
2h1, l2,

l1

2
, 2̂l2,

l̂1

2

) (
b − 1
b − a ,

b

b − a
)

(ii) The group D5 is the mapping class group of the pentagon. And we do have
a pentagon in the picture (see Figure 5): the one with sides {l1/2, l̂2, l2, l̂1/2, h1}. In
this setting the action of D5 corresponds exactly to the different ways one can build
a symmetric hexagon starting with the pentagon. This suggests the idea that we can
do this for other hyperbolic polygons, and this is indeed the case. Starting with a
hexagon we can glue eight copies of the same, without twist. We obtain in this way
a real hyperelliptic genus-3 curve with a real genus-2 quotient. The action of D6 can
be seen as generated by cyclic permutation of the sides and replacing lengths by dual
lengths—that is, replacing y2 = P(x) by y2 = −P(x). The first action leaves the
genus-2 quotient fixed (up to complex isomorphism, from the real point of view we
have, in general, two quotients). On the level of equations we can describe the action
in the following way.

Let y2 = P(x) = (x2 − a)(x2 − b)(x2 − c)(x2 − 1), (0 < a < b < c < 1)
be the equation of the genus-3 curve. An equation of the genus-2 quotient is then
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y2 = x(x − a)(x − b)(x − c)(x − 1). The cyclic permutation of the sides of the
hexagon can be written (a, b, c) �→ (1− c, (1− c)/(1− a), (1− c)/(1− b)).

(iii) The D5 action is more difficult to describe in terms of period matrices, but
we can indicate some relations between the coefficients of the period matrices of the
transforms.

We have described the action of ϕ in (5.8). To describe the action of η = ϕψ , letC
again be the curve defined by (5.9), and let Z be the standard period matrix associated
to equation (5.9) as in Lemma 2.2. Writing out the action of the automorphisms j1
and j2 on H1(C,Z) and  1(C), it is straightforward to check that Z is of the form

i


y1

y2

2
y13

y2

2
y2

y2

2
y13

y2

2
y1

 .
From the explicit description of how the quotients are obtained, it is again straight-
forward to show that a period matrix for <1 is

i

(
2y2 y2

y2 y1 + y13
)
,

which is equivalent to

i

(
y1 + y13 y1 + y13 − y2

y1 + y13 − y2 y1 + y13
)
,

and that a period matrix for <2 is

i

 2y1 − y2

2
2y13 − y2

2

2y13 − y2

2
2y1 − y2

2

 .
Note that this description is in terms of a covering and that it does not yield a

direct method to pass from a period matrix of <1 to one of <2.

6. Special families and special curves
In this section we describe families of surfaces defined by simple relations between
their Fenchel-Nielsen coordinates and algebraic relations between the coefficients
of the equations defining the associated algebraic curves. We use the notation of
Section 5.

Our first family is defined by the condition l1 = l̂1 (which implies l2 = l̂2 and
l3 = l̂3). For such surfaces we can find an equation of the form (5.4) with c = −1/b
and d = −1/a.
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Let us now work again in P2, so that we have l2 = l3. Then the normalized
equation (5.5) becomes

y2 = (x2 − a)(x2 − 1)(x2 − 1

a

)
.

Hence the correspondence of the following conditions defining the same family
inP2 (notation as in Table 5.17):

l̂1 = l1, b = 1

a
, 0 < a < 1 < b. (6.1)

(Note that this family can also be defined by the conditions cosh(h1) = (cosh(l1)+
1)/(cosh(l1)− 1) or cosh2(l2) = 2 cosh(l1)/(cosh(l1)− 1).) We also note that, con-
versely, any curve with b = 1/a in a normalized equation (5.5) has l̂1 = l1.

The one parameter family described in (6.1) is the fixed subspace under the action
of ϕ of Table 5.17. Its images under the D5 action are the fixed subspaces of the 5
involutions ϕψk and can be described by

l1 = 2l2, a = b

b + 1 , 0 < a < 1 < b. (6.2)

This family can also be defined by the conditions l̂1 = 2h1 or cosh(̂l1) = 2 cosh(̂l2)+1
or cosh(̂l2) = (cosh(l1)+ 1)/(cosh(l1)− 1),

l2 = h1, a = b(2− b), 0 < a < 1 < b, (6.3)

which can also be defined by the condition l1 = 2 l̂2,

l1 = 2h1, b = a + 1, 0 < a < 1 < b, (6.4)

l̂2 = h1, b = a2

2a − 1 , 0 < a < 1 < b. (6.5)

Note that the last two are images under ϕ of (6.2) and (6.3).
We next consider the family defined by the condition l1 = l2 = l3.

lemma 6.6
The curves associated to the surfaces in P satisfying the conditions l1 = l2 = l3

have equations of the form

y2 = (x2 − a)(x2 − 1)(x2 − b),
with

a = (3− t)2
(t2 + t)2 , b = (3+ t)2

(t2 − t)2 and 1 < t < 3.

Conversely, any curve with such an equation is associated to a surface in P with
l1 = l2 = l3.
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Proof
The condition l1 = l2 = l3 implies that Z/3 ⊂ Aut+

R
(C). Conversely, if the curve

has a nontrivial automorphism of order 3, then it must permute the real components
(since Weierstrass points must be sent to Weierstrass points) and hence the surface
satisfies l1 = l2 = l3.

Fix t , 1 < t < 3. The curve defined by the equation in Lemma 6.6 is isomorphic
to the one defined by

y2 = (x2 − t2a)(x2 − t2)(x2 − t2b),
and on this curve (x, y) �→ ((x + 3)/(1− x), 8y/(x − 1)3) defines an automorphism
of order 3. To see that this parameterizes the complete family, we only need to note
that it is a one parameter family and that t = 1 corresponds to l1 = 0 while t = 3
corresponds to l1 = ∞.

Taking images by the D5-action, we find four more families,

l1 = 4l2
(
or l̂2 = 2h1

)
, a = 16t

(
3+ t2)

(3+ t)2(t + 1)2 , (6.7)

b = 16t

(t + 1)3(3− t) , 1 < t < 3,

h1 = 2l2
(
or l̂1 = 2l1

)
, a = (t + 1)3(3− t)

16t
, (6.8)

b =
(
t2 + t)2
(3− t)2 , 1 < t < 3,

and the images of these two by ϕ,

l2 = 2h1, a = (3+ t)3(t − 1)
16t3

, b = (3+ t)2(t + 1)2
16t
(
t2 + 3) , 1 < t < 3, (6.9)

l1 = 2̂l1, a = (t2 − t)2
(3+ t)2 , b = 16t3

(3+ t)3(t − 1) , 1 < t < 3. (6.10)

The intersection points of these families give us a first set of special curves that
we can uniformize explicitly. Our first example is at the common point of intersection
of the families (6.1)–(6.10) and is in fact the fixed point of the D5 action:

cosh(l1) = 2+ √
5, cosh(l2) = 1+ √

5

2
,

a =
√
5− 1
2

, b = 1+ √
5

2
.

(6.11)



234 BUSER AND SILHOL

The hexagon defining the surface is a double of the right-angled regular pentagon,
and we refer to this curve as obtained from the regular pentagon.

Remark 6.12
Note that the curve defined by (6.11) is not isometric to the one with a Z/5
action—that is, the curve defined by y2 = (x5 − 1). The reason for this is that,
up to isomorphism, there are only two distinct real structures on this last curve and
each has only one real component.

Our second example is the curve at the intersections of (6.1) and (6.6),

cosh(l1) = 2, cosh(l2) = 2, a = 7− 4√3, b = 7+ 4√3. (6.13)

The hexagon defining this curve is the regular hexagon, with all sides equal to
arccosh(2). This curve is isometric to the one defined by y2 = (x6 − 1), but it is
not real isomorphic. In this second form the curve has only one real component, and
for this reason we prefer to present it as obtained from the hexagon cosh(l1) = 5,
cosh(l2) = cosh(l3) = 4, pasting with zero twist along the side with length 2l1 and a
half-twist along the two other sides. (One can deduce this description from [KN].)

Our third example is obtained by taking a twofold quotient of the genus-3 curve
defined by the regular octagon. To obtain an equation for this curve, we start with
y2 =∏(x − exp(kiπ/4)) and transform by x �→ i((1+ x)/(1− x)) to obtain

y2 = x
(
x2 − (√2− 1)2)(x2 − 1)(x2 − (1+ √

2
)2)

as an equation for the corresponding genus-3 curve with four real components. Using
x �→ (1− tx)/(t + x), we bring it into the normal form

y2 = (x2 − t2)(x2 − 1

t2

)(
x2 −

(
1+ t
1− t

)2)(
x2 −

(
1− t
1+ t

)2)
, (6.14)

with t =
√
4+ 2√2 − (√2 + 1). As in (5.9)–(5.10) we take the genus-2 quotient

under (x, y) �→ (−x,−y) and obtain the normal form

y2 =
(
x2 −

(
1

4

√
2+ 1

2

))(
x2 − 1)(x2 − (1+ √

2
)2)
.

Since the lengths of the sides of the octagon are arccosh(1 + √
2), we have the

correspondence

cosh(l1) = 1+ √
2, cosh(l2) =

√
1+ 1

2

√
2,

a = 1

4

√
2+ 1

2
, b = 3+ 2√2.

(6.15)
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We can do a similar construction with the regular dodecagon, defining a genus-5
curve. After some computations we find that a fourfold genus-2 quotient has equation

y2 = x
(
x2−1)(x− (7+4√3))(x− (7−4√3)) = x

(
x2−1)(x2−14x+1) (6.16)

and corresponds to cosh(l1) = (1+ √
3)/2, cosh(l2) = 1+ √

3.

Remarks 6.17
(i) The values of a and b for the curve in (6.16) (see Table 8.4) are not particularly
“nice” but the curve has a nice period matrix

i

3

(
5 4
4 5

)
that can be computed using the genus-1 quotients.

(ii) The curve in (6.16) should not be confused with the curve in Lemma 6.6 which
has equation y2 = (x2−1)(x4−14x2+1) nor with the curve y2 = x(x4−14x2+1),
quotient of the special genus-3 curve y2 = x8 − 14x4 + 1 (see [RG]). The latter is
isomorphic to the curve with equation y2 = (x2− 1/3)(x2− 1)(x2− 3), and we give
its explicit uniformization later (see Table 8.2).

The intersection of (6.3) and (6.6) yields another curve that we describe in Section 8.5,
and of course we also have all the transforms of the ones we have obtained under the
D5-action. We list these in Section 8, but beforehand we want to show that there are
still other natural transformations not covered by the D5-action.

proposition 6.18
Let C be a real genus-2 M-curve satisfying the length conditions l1 = 2l2 = 2l3.
Let l′1 = arccosh((cosh(l1) + 1)/(cosh(l1) − 1)), and let l′2 = l′3 = l′1/2. Let C′ be
associated to {l′1, l′2, l′3}. Then if

y2 = (x2 − α2)(x2 − 1)(x2 − β2), 0 < α < 1 < β,

is an equation defining C,

y2 =
(
x2 − α′2)(x2 − 1)(x2 − β ′2), 0 < α′ < 1 < β ′,

with

α′2 = β ′2

β ′2 + 1 and β ′ = β + 1
β − 1 ,

is an equation defining C′.
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Proof
We consider the genus-3 curves < defined by an equation of the form in (6.14)
with 0 < t <

√
2 − 1. For such curves we have D4 ⊂ Aut+(<), the group of

automorphisms being generated by x �→ 1/x and x �→ (x − 1)/(x + 1). Looking at
this action, it is easily checked that the lengths of the four real components of < are
all equal. This implies that the quotient C of < by (x, y) �→ (−x,−y) satisfies the
condition l1 = 2l2 = 2l3. Hence C is in the family in (6.2).

Using (5.10), the normalized equation for C becomes

y2 = (x2 − α2)(x2 − 1)(x2 − β2),
with

α = 1− t2
1+ t2 and β = 1− t2

2t
. (6.19)

Let <̂ be the dual curve to <—that is, defined by y2 = −P(x). An equation for
this curve in the form in (6.14) is obtained by replacing t by (1− (1+ √

2)t)/((1+√
2)+ t), and it can be checked that the equation of the quotient C′ of <̂ is

y2 =
(
x2 − α′2)(x2 − 1)(x2 − β ′2),

with

α′2 = β ′2

β ′2 + 1 and β ′ = β + 1
β − 1 .

In terms of lengths of geodesics, passing fromC toC′ can be described as replacing l1
by l̂2 = arccosh((cosh(l1)+ 1)/(cosh(l1)− 1)), and this ends the proof.

The transformation described in (6.18) has one fixed point that corresponds to the
curve in (6.15).

We can also transport this transformation to the other fixed spaces of the ϕψk’s
in equations (6.1)–(6.5). The description is rather lengthy, and we only note that
on the subspace (6.1), defined by l1 = l̂1, the transformation is also described by
l1 �→ arccosh((cosh(l1)+ 1)/(cosh(l1)− 1)) and β = √

b �→ (β + 1)/(β − 1).

7. Curves with one half-twist
To describe the action of D5 we have used the correspondence between two different
quotients of a genus-3 curve C defined by an equation of the form

y2 = (x2 − x21
)(
x2 − x22

)(
x2 − 1

x21

)(
x2 − 1

x22

)
. (7.1)
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We have used the involutions induced by x �→ −x and x �→ 1/x, but there is
a third induced by x �→ −1/x. An equation for the quotient <3 of C by this last
involution is

y2 = (x2 + 4) (x2 −
(
x1 − 1

x1

)2)(
x2 −

(
x2 − 1

x2

)2)
, (7.2)

the quotient map being (x, y) �→ (x − 1/x, (x2 + 1)y/x3).
To find Fenchel-Nielsen coordinates for this new curve <3, we use the notation

introduced in (5.13) and (5.15).
If we call ψ3 the quotient map C → <3 and call π3 the projection <3 → P

1, we
have (notation as in Section 5)

π−1
3

(]
− ∞, x1 − 1

x1

]
∪
[
1

x1
− x1,∞

[)
= ψ3

(
λ2
) = ψ3

(
λ′
2

)
,

π−1
3

([
x1 − 1

x1
, x2 − 1

x2

])
= ψ3

(
µ1
) = ψ3

(
µ′
2

)
,

π−1
3

([
x2 − 1

x2
,
1

x2
− x2

])
= ψ3

(
λ1
) = ψ3

(
λ′
1

)
,

π−1
3

([
1

x2
− x2, 1

x1
− x1

])
= ψ3

(
µ2
) = ψ3

(
µ′
1

)
,

π−1
3

( ] − ∞,−2i] ∪ [2i,∞[ ) = ψ3
(
µ3
) = ψ3

(
µ′
3

)
,

π−1
3 ([−2i, 2i]) = ψ3(ν) = ψ3

(
ν′).

(7.3)

From this it is easy to check on which cycles theψi’s are one-to-one or two-to-one
and compare lengths.

We note also that the simple closed geodesics π−1
3 (] − ∞,−2i] ∪ [2i,∞[),

π−1
3 ([x1 − 1/x1, x2 − 1/x2]), and π−1

3 ([1/x2 − x2, 1/x1 − x1]) define a pants de-
composition of <3. Moreover, looking at the action of (x, y) �→ (x̄,−ȳ) on this
decomposition, we see that we can take the twist parameters to be 0 on the last two
and 1/2 on the first.

proposition 7.4
Let P be a pair of pants with lengths of boundary components 2l1, 2l2, and 2l2.

Let C1 be the genus-2 curve obtained by gluing two copies of P with zero twists,
and let C2 be the curve obtained by gluing two copies of P with zero twists along
the sides of length 2l2 and a half-twist along the side of length 2l1. Then if C1 has
equation

y2 = (x2 − a)(x2 − 1)(x2 − b), 0 < a < 1 < b,
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C2 has equation

y2 = −(x2 + 1)(x2 − a

b − a
)(
x2 − 1

b − 1
)
.

Proof
Let l̂1, l̂2, and l̂2 be the lengths of the common perpendiculars to two boundary
components of P , and let P̂ be the pair of pants with boundary lengths 2̂l1, 2̂l2,
and 2̂l2.

By the construction given at the beginning of this section, we see that if we
identify C1 with <1, then <3 is obtained by gluing two copies of P̂ with zero twist
on the sides of length 2̂l2 and a half-twist along the side of length 2̂l1.

Renormalizing as before equation (7.2), we find that if <1 has equation (5.5),
then <3 has equation

y2 = −(x2 + 1)(x2 − a

b − a
)(
x2 − a

1− a
)
.

Recalling that to obtain the equation of the curve obtained by gluing two copies
of P̂ with zero twists we only need to replace (a, b) by (1/b, 1/a), we have the
proposition.

Figure 6

Remarks 7.5
(i) We have taken the half-twist along π−1

3 (] − ∞,−2i] ∪ [2i,∞[). But replacing
this cycle by π−1

3 ([−2i, 2i]) would also have yielded a pants decomposition with
one half-twist. In terms of lengths in <1, this corresponds to replacing l1 by 2h1 (see
Figure 6).

(ii) The preceding construction allows us also to find the Fenchel-Nielsen coor-
dinates of the curve Ĉ2 with equation y2 = (x2+1)(x2−a/(b−a))(x2−1/(b−1)).
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For this let l̂1 and l̂2 be the dual lengths of the hexagon defining C1 in Proposition 7.4.
Let l′2 = l̂1, l′3 = 2̂l2, and l′1 = arccosh(cosh(l′2)+ cosh(l′3)+1). Let P ′ be the pair of
pants with boundary components of lengths 2l′1, 2l′2, and 2l′3; then the curve obtained
by gluing two copies of P ′ with a half-twist along the first boundary component and
zero twists along the last two is Ĉ2.

Via Proposition 7.4 we can transport theD5 action of Section 5 onto the space of real
genus-2 curves with two real components and nontrivial automorphisms. The images
of the fixed spaces under the involutions of the D5 action are also algebraically
defined subspaces of M (2,2,1)

R
(Z/2 × Z/2). In particular, if we start with the fixed

part under ϕψ4, defined by the condition cosh(l1) = 2 cosh(l2)+ 1, then we recover
the family of curves with equations of the form y2 = −(x2 + 1)(x2 − a)(x2 − 1/a)
(since for this family we have b = a + 1).

We can also transport the curves for which we know exact solutions to obtain new
ones.We do this in Section 8. Here we give only one example. Let cosh(l1) = 3+2√2,
and let cosh(l2) = 1+√

2; then the corresponding curve with one half-twist obtained
as in Proposition 7.4 has equation

y2 = (x2 + 1)(x2 − (1+ √
2
)2)(

x2 − (√2− 1)2) = (x2 + 1)(x4 − 6x2 + 1).
It is easily checked that this curve is isomorphic to the curve y2 = x(x4 − 1)

with reduced automorphism group isomorphic to the symmetric group S4.
Up until now we have made all our constructions using double covers, but we

can use coverings of other orders. We indicate here one construction.

lemma 7.6
Let Pt be the pair of pants with boundary lengths 2t , 6t , andωt , whereωt = 2 arccosh
(2 cosh2(t)). Let Ct be the curve obtained by gluing two copies of Pt with zero twists
along the first two boundary components and a half-twist along the last. Then when
t varies from zero to ∞, the family of curves Ct describes an algebraic subspace of
M (2,2,1)

R
, the moduli space of real genus-2 curves with two real components.

Proof
Start with a sphere with eight disks removed on which the full group of the cube
operates (i.e., including the orientation-reversing symmetries). One can endow such
a sphere with a hyperbolic metric such that the boundary consists of closed geodesics
and the group acts by isometries.

One way to do this is to start with a hexagon defined by l1 = 2t, l2 = l3 = t .
Observe that we also have 2h1 = l̂1. Glue two copies of the hexagon along l̂1 to
obtain an octagon with sides equal 4 by 4; then glue six copies of the octagon to
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obtain the sphere with eight disks removed. In order to describe the symmetries we
view this sphere as a cube with holes at the vertices.

Taking the Schottky double, we obtain a real genus-7 curveC with an orientation-
reversing symmetry σ interchanging the two sheets. This defines a real structure on C
which has eight real components all of the same length l = 6t . We obtain in this way
a family of dimension 1 parametrized by t .

The real automorphism group of C contains all the automorphisms induced by
the orientation-preserving isometries of the cube (i.e., S4) plus the ones induced by
the orientation-reversing ones composed with σ . In particular, it contains a fixed-
point free automorphism of order 3, f (rotation of angle 2π/3 and axis one of the
diagonals of the cube). The quotient C′ of C by f is of genus 3, and it has four real
components, β1, . . . , β4. By construction we have 6t = length(β1) = length(β2) =
3 length(β3) = 3 length(β4).

Let g̃ be a symmetry of C through a plane containing the axis of f , and let
g = g̃ ◦ σ . Then it is easily checked that g induces an involution on C′ with eight
fixed points; hence C′ is hyperelliptic. Also, g̃ defines a second real structure on C
for which the half-lengths of the real components are l̂1, l̂2, l̂1, l̂2.

Consider C′ as the Schottky double of a sphere with four disks removed. Com-
posing the central symmetry with the involution exchanging the sheets of the Schottky
double yields a fixed-point free involution on C′. The quotient C′′ of C′ is real of
genus 2 and has two real components; hence it is obtained by gluing two copies of
a pair of pants with zero twist along two boundaries and a half-twist along the third.
The lengths of the two which are glued with zero twists are by construction 2t and 6t .
To compute the length of the third we note that the length of the common perpendic-
ular to the first two is l̂1. The result then follows from (5.1) and the formulas in [Bu,
Theorem 2.4.1].

We can make similar constructions with the other regular polyhedrons. In the case of
the tetrahedron and the octahedron this yields families obtained earlier.

On the other hand, the icosahedron gives new families. We do a construction
completely similar to the one made for the cube. (The hyperbolic structure is this
time obtained by gluing twenty copies of a hexagon with three opposite sides equal.)
This gives a real genus-11 curve C with twelve real components all of the same
length l and a real automorphism of order 5. The quotient is a genus-3 curve C′ with
four real components of lengths l, l, l/5, l/5. To see that C′ is again hyperelliptic and
that the lengths of the second real structure are equal in pairs, we note that on C
we again have an involution with eight fixed points obtained by taking reflection
through a plane containing the axis of the order-5 automorphism and two edges of
the icosahedron. C′ has again a real genus-2 quotient with two real components.
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Finally, we can also use the considerations of this section to compute numerically
period matrices and equations for general genus-2 surfaces with “one half-twist.” For
this we start with a genus-3 curve C, with equation of the form

y2 =
4∏
k=1
(x − xk)

(
x + 1

xk

)
. (7.7)

Such a curve has a genus-2 quotient < under one of the involutions induced by
x �→ −1/x. An equation for < is

y2 = −(x2 + 4) 4∏
k=1

(
x − xk + 1

xk

)
. (7.8)

By (5.13) and (7.3) the lengths of the octagon defining C are completely determined
by the lengths defining <. Since using the methods of Sections 3 and 4 we can
compute numerically an equation for C in terms of the lengths of the octagon, this
provides a practical way of computing an equation for < in terms of its Fenchel-
Nielsen coordinates. Explicitly we can proceed as follows. Let H be the hexagon
defined by {l1, l2, l3}, and let H ′ be the hexagon defined by {l1, l3, l2} (i.e., obtained
by taking the symmetric image with respect to the common orthogonal to l1 and l̂1).
Glue H and H ′ along the sides of lengths l1 to obtain an octagon (see Figure 7).

l1

l3 l2

l3
l2

Figure 7

Compute the capacities of this octagon and the period matrix using the methods
of Section 3. Because of the relations between the lengths we can, using Theta char-
acteristics, find an equation for the corresponding genus-3 curve of the form in (7.7).
The curve corresponding to {l1, l2, l3}, with one half-twist along the side of length l1
then has equation (7.8).
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An alternative way to obtain an equation for < is to compute from the period
matrix of C a period matrix of < and then to compute an equation for < using Theta
characteristics. For this, let

Z = i

 y1 y12 y13

y12 y2 y23

y13 y23 y3


be the standard period matrix associated to equation (7.7). The automorphism induced
by x �→ −1/x imposes nontrivial relations between the coefficients of Z. Namely,
we have

y1 − y12 = y3 − y23 and y2 = y12 + y23.
From this, using the explicit description of the covering given above, it is straight-

forward to show that
1

2
+ i y2

2

1

2
+ i
(
y2

2
− y12

)
1

2
+ i
(
y2

2
− y12

)
1

2
+ i
(
y1 − y13 + y2

2
− y12

)


is a period matrix for the curve with equation

y2 = (x2 + 4) 4∏
k=1

(
x − xk + 1

xk

)
.

8. Tests and examples
We have written various programs using the considerations of the preceding sections.
The programs have been written in C, using double precision. They are quite compact
and totally portable.

We have tested various values for the number of points per arc and the degree of
the harmonic polynomials. Experimentally we have found that taking 40 to 50 points
per arc and degree of the polynomial between 80 and 120 is sufficient to obtain an
accuracy of at least ±10−10 in all examples listed below and even ±10−12 in most
cases. The time needed for the computations depends on the machine used but is
never more than a few seconds.

We have mostly concentrated on genus 2, but we have also made tests for genus 1.
In this case we have one example for which we have no explanation but which is never-
theless worth mentioning. The curve defined by the condition l = arcsinh(

√
2) (half-

length) and zero twist seems to have the equation y2 = x(x − 1)(x − 9/8) or, equiv-
alently, y2 = (x2 − 1)(x2 − 4); the period is approximately 0.6396307855855 · · · i.
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For the related curve defined by the condition l = arcsinh(1/
√
2), we find y2 =

x(x − 1)(x − 9)—and this again with a very good approximation.
For genus 2 we have many examples, including many exact examples, obtained

using Table 5.17 and Propositions 6.18 and 7.4. We list these below and emphasize
the point that no two surfaces in these lists are isometric (i.e., the curves are not
isomorphic over C). That the curves are not isomorphic over R is obvious from the
length conditions, and that they are not isomorphic over C can be deduced from the
results of S. Natanzon [Na, p. 70] (see also [BEGG]).

Examples with zero twists
Here l1, l2, h1, l̂1, l̂2, and (a, b) have the same meaning as in Table 5.17. In the follow-
ing tables the symbol —∗— means that the term does not have a simple expression,
although it can be computed using the formulas in Table 5.17 and in Proposition 6.18.

To obtain a real equation for the curve corresponding to (̂l1, l̂2, h1, l1, l2), one
only needs to replace (a, b) by (1/b, 1/a).

Table 8.1. Obtained from the regular pentagon

(
cosh l1, cosh l2, cosh h1, cosh l̂1, cosh l̂2

)
(a, b)(

2+ √
5,
1+ √

5

2
,
1+ √

5

2
, 2+ √

5,
1+ √

5

2

) (√
5− 1
2

,
1+ √

5

2

)
(
1+ √

5

2
,

√
2+ √

10

4
,

√
2+ √

10

2
, 5+ 2√5, 2+ √

5

) 
(√
1+ √

5+ √
2
)2

2
(
3+ √

5
) ,

(√
1+ √

5+ √
2√

1+ √
5− √

2

)2
(
5+ 2√5,

√
2+ √

10

4
,

√
2+ √

10

4
, 17+ 8√5,

√
2+ √

10

2

)
(— ∗—,— ∗—)

(
1+ √

5

2
,

√
2+ √

10

2
, 2+ √

5,
1+ √

5

2
,

√
2+ √

10

2

) (√1+ √
5− √

2√
1+ √

5+ √
2

)2
,

(√
1+ √

5+ √
2√

1+ √
5− √

2

)2
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Table 8.2. Obtained from the regular hexagon(
cosh l1, cosh l2, cosh h1, cosh l̂1, cosh l̂2

)
(a, b)

(2, 2, 3, 2, 2)
(
7− 4√3, 7+ 4√3 )(

2,

√
3

2
, 2, 7, 3

) (
2+ √

3

4
, 7+ 4√3

)
(
7,

√
3

2
,

√
3

2
, 17, 2

) (
56

√
3− 96, 8− 4√3 )

(
3,

√
2,

√
3, 5, 2

) (
3

4
, 3

)
(
5,

√
2,

√
2, 7,

√
3
) (

8

9
,
4

3

)
(
3,

√
3, 2, 3,

√
3
) (

1

3
, 3

)

Table 8.3. Obtained from the regular octagon(
cosh l1, cosh l2, cosh h1, cosh l̂1, cosh l̂2

)
(a, b)1+ √

2,

√
1+

√
2

2
,

√
2+ √

2, 3+ 2√2, 1+ √
2

 (
2+ √

2

4
, 3+ 2√2

)
3+ 2√2,

√
1+

√
2

2
,

√
1+

√
2

2
, 5+ 4√2,

√
2+ √

2

 (
12

√
2− 16, 4− 2√2

)
(
1+ √

2,

√
2+ √

2, 1+ √
2, 1+ √

2,

√
2+ √

2

) (
3− 2√2, 3+ 2√2 )

The curve corresponding to the regular dodecagon has equation y2 = x(x2−1)(x2−
14x + 1). The coefficients a and b of the normalized equation do not, however, have
a simple expression since a−1 = b = (7+ 4√3+ 2√2

√
12+ 7√3)2.
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Table 8.4. Obtained from the regular dodecagon(
cosh l1, cosh l2, cosh h1, cosh l̂1, cosh l̂2

)
(a, b)(

1+ √
3

2
, 1+ √

3, 3+ 2√3, 1+ √
3

2
, 1+ √

3

)
(— ∗—,— ∗—)

(
7+ 4√3,

√
3+ √

3

2
,

√
3+ √

3

2
, 41+ 24√3, 1+ √

3

)
(— ∗—,— ∗—)

(
1+ √

3

2
,

√
3+ √

3

2
, 1+ √

3, 7+ 4√3, 3+ 2√3
)

(— ∗—,— ∗—)3+ 2√3,
√
2+ √

6

2
,

√
3+ √

3

2
, 2+ √

3,
1+ √

3

2

 (
4− 2√3, 2

√
3

3

)
2+ √

3,

√
2+ √

6

2
,

√
2+ √

6

2
, 1+ √

3,

√
3+ √

3

2

 (
1

4
, 1+

√
3

2

)
3+ 2√3,

√
3+ √

3

2
,
1+ √

3

2
, 3+ 2√3,

√
3+ √

3

2

 (√
3

2
,
2
√
3

3

)

8.5
We also have one last exact family with zero twists; it is formed by the images of
the surface at the intersection of the families defined by l1 = l2 = l3 and l2 = h1—
the latter being the fixed subspace under ϕψ3 of Table 5.17. For this curve we find
that cosh(l1) is the root 3.214 . . . of the equation x3 − 3x2 − x + 1 = 0 and that
a = ((3− t)/(t2 + t)2, b = ((3+ t)/(t2 − t))2, where t is the root 2.542 . . . of the
equation t6 + 22t5 − 29t4 − 28t3 − 105t2 − 90t − 27 = 0. Note that this surface
satisfies also the relations l1 = 2̂l1 = 2̂l2.

This curve and its transforms yield six new and nonisometric exact correspon-
dences (with zero twists). Among these we find the curves defined by the relations
l1 = l̂1 = 4l2 and l1 = 2l2 = 2̂l1 = 8̂l2 (and, as always, l2 = l3).

Apart from these exact correspondences, we have found some very intriguing
approximations (which are exact up to ±10−12 or better).
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Table 8.6(
cosh l1, cosh l2, cosh h1, cosh l̂1, cosh l̂2

)
(a, b)(

2,
√
2,

√
5, 4,

√
6
) (

16

25
, 16

)
(
9,

√
6,

√
5√
2
, 3,

√
3√
2

) (
3

8
,
25

24

)
(
4,

√
3√
2
,
√
2, 11,

√
5

) (
125

128
,
25

16

)
(
3,

√
5,

√
6, 2,

√
5√
2

) (
1

16
,
8

3

)
(
11,

√
5√
2
,

√
3√
2
, 9,

√
2

) (
24

25
,
128

125

)

Table 8.7(
cosh l1, cosh l2, cosh h1, cosh l̂1, cosh l̂2

)
(a, b)(

2,

√
5

2
,

√
7√
2
, 13,

√
15

) (
896

900
,
35

3

)
(
6,

√
15,

√
7,
3

2
,

√
3√
2

) (
5

1029
,
375

343

)
(
13,

√
3√
2
,

√
5

2
, 29,

√
7√
2

) (
2400

2401
,
225

224

)
(
3

2
,

√
7√
2
,
√
15, 2,

√
7

) (
3

35
,
1029

5

)
(
29,

√
7,

√
3√
2
, 6,

√
5

2

) (
343

375
,
2401

2400

)

For other examples the coefficients a and b are not as simple, but other forms of
the equations can be expressed simply. We give these here but limit ourselves to one
or two examples in each family.
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8.8
We have cosh(l1) = 3/2, cosh(l2) = √

6, and equation y2 = (x2 − 1)(x4 −
(506/3)x2 + 1). This curve and its transforms give six new ones with zero twists,
among which cosh(l1) = 5, cosh(l2) = √

5/2, with equation y2 = (x2 − 1)(x4 −
(262/125)x2 + 1).

8.9
We have cosh(l1) = 3/2, cosh(l2) = 3/2, and equation y2 = (x2− 1)(x4− 236x2+
100). This example has five distinct transforms (including this one) with zero twists.
It is also isometric to the curve defined by cosh(l1) = 3, cosh(l2) = 3 with equation
y2 = (x2 − 1)(x4 − (236/100)x2 + 1/100).

8.10
We have cosh(l1) = 2, cosh(l2) = √

7/2, and equation y2 = (x2 − 1)(x4 −
(113/7)x2 + 49/4). This example has five distinct transforms with zero twists.

Examples with one half-twist
We use here a somewhat different notation. The notation{(

λ1, λ2
) � (λ′

1, λ2
)(

µ1, µ2, µ3
) (a, b)

contains several pieces of information. First of all, it says that the surface is obtained
by pasting two copies of the pair of pants with lengths 2li = 2 arccosh(λi), l2 = l3,
zero twist along the boundary components of lengths 2l2 and 2l3, and a half-twist
along the one of length 2l1; secondly, it says that this surface is isometric to the
one obtained by replacing λ1 by λ′

1. Both of these have a real structure, with two real
components corresponding to the sides of lengths 2l2 and 2l3 (and these real structures
are isomorphic). The corresponding equation is y2 = −(x2 − a)(x2 − b)(x2 + 1).
Finally, the surface is also isometric to the one obtained by pasting two copies of
the pair of pants with lengths 2mi = 2 arccosh(µi), zero twist along the boundary
components of lengths 2m2 and 2m3, and a half twist along the one of length 2m1.
The real structure we consider in this case is the one with real components of lengths
2m2 and 2m3, and the real equation is this time y2 = (x2 − a)(x2 − b)(x2 + 1) (see
Section 7 for more details). Again the symbol—∗—means that the coefficients do not
have a simple expression but that they can be computed exactly (using Proposition 7.4
this time).



248 BUSER AND SILHOL

Table 8.11. Obtained from the regular pentagon
(
2+ √

5,
1+ √

5

2

)
�
(
2+ √

5,
1+ √

5

2

)
(
5+ 2√5, 2+ √

5, 2+ √
5
)

(√
5− 1
2

,
1+ √

5

2

)

(
1+ √

5

2
,

√
2+ √

10

4

)
�
(
5+ 2√5,

√
2+ √

10

4

)
(
23+ 10√5, 5+ 2√5, 17+ 8√5

) (— ∗—,— ∗—)



(
17+ 8√5,

√
2+ √

10

2

)
�
(
1+ √

5

2
,

√
2+ √

10

2

)
(
13+ 5√5

2
, 5+ 2√5, 1+ √

5

2

) (— ∗—,— ∗—)

Table 8.12. Obtained from the regular hexagon{
(2, 2) � (17, 2)

(10, 2, 7)

(
7
√
3

24
− 1

2
,
2
√
3− 3
6

)

(
2,

√
3

2

)
�
(
7,

√
3

2

)
(25, 7, 17)

(
7− 4√3, 2

√
3− 3
6

)
{
(5, 2) � (5, 2)

(7, 3, 3)

(
1

3
, 3

)
{(
5,

√
2
) � (3,√2)

(13, 7, 5)
(2, 3)

{(
7,

√
3
) � (3,√3)

(9, 5, 3)
(2, 8)
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Table 8.13. Obtained from the regular octagon


1+ √

2,

√
1+

√
2

2

 �
3+ 2√2,

√
1+

√
2

2


(
9+ 6√2, 3+ 2√2, 5+ 4√2 )

((√
2− 1)2, √

2− 1
2

)


(
3+ 2√2, 1+ √

2
) � (3+ 2√2, 1+ √

2
)

(
3+ 2√2, 1+ √

2, 1+ √
2
) ((√

2− 1)2, (1+ √
2
)2 )


(
5+ 4√2,

√
2+ √

2
)

�
(
1+ √

2,
√
2+ √

2
)

(
5+ 3√2, 3+ 2√2, 1+ √

2
) (

2+ 2√2, 16+ 12√2 )

The second curve in Table 8.13 (defined by cosh(l1) = 3+2√2, cosh(l2) = 1+√
2)

also has the more familiar equation y2 = x(x4 − 1).

Table 8.14. Obtained from the regular dodecagon
(
3+ 2√3,

√
2+ √

6

2

)
�
(
2+ √

3,

√
2+ √

6

2

)
(
4+ 2√3, 2+ √

3, 1+ √
3
)

(√
3

2
, 3+ 2√3

)

(
2+ √

3,
1+ √

3

2

)
�
(
2+ √

3,
1+ √

3

2

)
(
7+ 4√3, 3+ 2√3, 3+ 2√3 )

(√
3

2
,
2
√
3

3

)

3+ 2√3,

√
3+ √

3

2

 �
1+ √

3,

√
3+ √

3

2


(
6+ 3√3, 3+ 2√3, 2+ √

3
)

(
3, 3+ 2√3 )



(
1+ √

3

2
, 1+ √

3

)
� (41+ 24√3, 1+ √

3
)

(
17+ 9√3

2
,
1+ √

3

2
, 7+ 4√3

) (— ∗—,— ∗—)


(
1+ √

3

2
,

√
3+ √

3

2

)
�
(
7+ 4√3,

√
3+ √

3

2

)
(
49+ 28√3, 7+ 4√3, 41+ 24√3 ) (— ∗—,— ∗—)



250 BUSER AND SILHOL

8.15
For the curves obtained from the ones we mentioned in Section 8.5, we have the same
difficulty as before in expressing the coefficients, but the transformation still gives
five more nonisometric surfaces, for which we can in principle compute equations
exactly.

8.16
For the surfaces listed in Tables 8.6 and 8.7 and in Sections 8.8–8.10 we only indicate
that for each of these families we obtain five more nonisometric surfaces with one
half-twist (hence a total of 25 additional ones).
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