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CONFORMAL AND MINIMAL IMMERSIONS
OF COMPACT SURFACES INTO THE 4-SPHERE

ROBERT L. BRYANT

ABSTRACT. We study the twistor map of Penrose, T: C P 3 -> S4 and show that

the complex 2-plane field in C P 3 orthogonal to the fibers of T is a holomor-

phic nonintegrable 2-plane field. We then show that every horizontal holo-

morphic curve in C P 3 projects under T to be a minimal surface in S4.

Finally, we use the Riemann-Roch theorem to construct, for any compact

Riemann surface A/2, a holomorphic horizontal curve Φ: M2 -> C P 3 without

ramification. It follows that T ° Φ: M2 -»• S4 is a conformal and minimal

immersion.

0. Introduction

The study of minimal surfaces in spheres has received much attention. In [7]
Lawson proved that every compact surface except RP 2 could be immersed into
5 3 as a minimal surface. However, it is unknown whether every compact
Riemann surface (= compact surface with a fixed complex structure) can be
conformally and minimally immersed into S3.

In [2], [3] Calabi studied minimal surfaces in Euclidean spheres, and in [4],
[5] Chern studied minimal immersions of the two-sphere into S4 and more
general spaces of constant curvature. Given a minimal immersion X: M2 -» Sn

9

where M2 is assumed oriented and is given the unique complex structure
compatible with the orientation and the metric on M2 induced by the immer-
sion, they found that they could construct a holomorphic quartic form β^on
M2 from the second fundamental form of the immersion. If M2 — S2, then the
Riemann-Roch theorem shows that Qx = 0. Exploiting this fact, Calabi and
Chern were able to prove extensive results concerning minimal immersions of
S2 into S". In the present paper, immersions X: M2 -> Sn satisfying Qx = 0
are referred to as superminimal immersions. In an unpublished work, the
author has shown that the over-determined system of partial differential
equations whose solutions are the superminimal immersions is inυolutiυe in
Cartan's sense, so one expects a good local theory.
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In [1] the author considers "complex curves" φ: M2 -> S6. These are smooth
maps from a given Riemann surface M2 into S6 whose differential at any point
is complex linear with respect to the standard almost complex structure on S6.
Such a map φ is automatically superminimal on the open set where φ is an
immersion. One constructs a map π: Q5 -» S6 where Q5 C CP6 is the complex
hyperquadric and a holomoφhic differential system $ C Ω 1 0 β 5 so that the
holomorphic integral curves of ί, Φ: M2 -> Q5, project to S6 as complex
curves. By using a local normal form for ί due to Elie Cartan, the Riemann-
Roch theorem may be applied to show that every Riemann surface M2 has a
holomorphic map Φ: M2 -> Q5 which is generically 1-1 (and which ramifies
over a finite divisor in M2) and moreover is an integral of ί. In this way, we
show that every Riemann surface appears as a "complex curve" in S6. In terms
of minimal surfaces, this shows that every Riemann surface occurs as a
minimal surface in S6 with a finite number of classical branch points.

In the present paper, we show that a similar result holds for superminimal
surfaces in S4.

In §1 we study the geometry of the celebrated "twistor map" of Penrose T:
CP3 -> S4. This section is essentially expository; we are merely collecting the
facts we need from an extensive literature and formulating them in terms of the
moving frame. In particular, we show that the complex 2-plane field orthogo-
nal to the fibers of T (under the standard Fubini-Study metric on CP3) is a
holomorphic nonintegrable distribution on CP3; moreover, the metrics induced
on each such 2-plane by restriction of the Fubini-Study metric and by
pull-back of the standard S4-metric are the same.

In §2 we show that if Φ: M2 -+ CP3 is a holomorphic horizontal curve
(where M2 is a Riemann surface), then Γ ° Φ : M2 -> S4 is a superminimal
surface (with classical branch points where Φ ramifies). Conversely, every
superminimal immersion Ψ: M2 -» S4 is shown to be of the form t = Γ ° Φ
where Φ is a (essentially) unique holomorphic horizontal curve Φ: M2 -> S4.

Finally, in §3 we derive a "Weierstrass formula" which shows how to
produce a holomorphic horizontal curve Φ(/, g): M2 -> CP3 for any pair of
meromorphic functions / and g (with dg £ θ ) o n a Riemann surface M2. We
then use a global theorem, Riemann-Roch, to show that for any compact
Riemann surface M2, we can find meromorphic functions / and g on M2 so
that Φ(/, g) is an immersion (in fact, we may easily arrange to have Φ(/, g)
an embedding). We conclude that Γ<>φ(/, g): M2 -» S4 is a conformal
minimal immersion, thus proving our theorem.
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1. The structure equations and some relevant geometry

We let H denote the real division algebra of quaternions. An element of H

can be written uniquely in the form q — z + jw where z, w E C, and G H

satisfies

(1.1) 7 2 = - l , zj=jz

for all z E C. In this way, we regard C c H a s a subalgebra and we give H the

structure of a complex vector space by letting C act on the right (because of

(1.1), this specification is necessary).

We let H 2 denote the space of pairs (q},q2) where qa E H for a = 1,2. We

will make H 2 into a quaternion vector space by letting H act on the right:

Since C c H , this automatically makes H 2 into a complex vector space of

dimension 4. In fact, regarding C 4 as the space of 4-tuples (z0, z,, z2, z3), we

make the explicit identification

(1.2) (z 0 , zj, z2, z3) - (z 0 +jzl9 z2 + jz3).

This specific isomorphism is the one we will always mean when we write

If υ E H 2 - {(0,0)} is given, let vC and t>H denote, respectively, the

complex line and the quaternion line spanned by v. We have vC C t>H,

moreover, because H is associative, (t»C)H = t>H. It follows that the assign-

ment υC -* vH induces a well-defined mapping T: CP 3 -> HP 1 . Since T~\vH)

consists of all the complex lines in vH ̂  C 2, we see that the fibres of T are

CP1 's. As we will see below, T is submersive (and T is clearly surjective), so we

have a fibration

CP1 • CP 3

HP 1

This is, of course, the famous "twistor" fibration. In order to study its

geometry more thoroughly, we will now introduce the structure equations of

H 2 .

First, we endow H 2 with a quaternion-valued inner product ( , >: H 2 X H 2

-> H defined by

0 3 ) ((?i>ft)> iPuPi))- Q\P\ + QiPi

We have the identities

(1.4) (υ,wq)= (υ,w)q, (v, w) = (w, v), (vq,w)= q (v,w).
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Moreover Re( , ): H 2 X H 2 ^ R i s a positive definite inner product which

gives H 2 the structure of E8, Euclidean eight-space.

Let f denote the space of pairs / = (el9 e2) with ea E H 2 for a — 1,2

satisfying

(1.5) < * ! , * , ) = < e 2 , O = l , < * i . O = 0

We regard the components ea(f) of/as functions with values in H 2 . Clearly

e0) = S 7 C E 8 = H 2 , and, for each v E S\

where ( ϋ H ) 1 = {w E H 2 | (v,w)= 0} is a quaternion line in H 2 by (1.4).

Thus we have a fibration

I
We may conclude from this that 5" is a simply-connected compact manifold

of real dimension 10, with

Hkn% R ) = ( R if* = 0,3, 7, 10,
10 otherwise.

In fact, it is well known that <% may be canonically identified with Sp(2) ^

Spin(5) up to a left translation in Sp(2). Regarding each ea as a vector-valued

function on ίF, we see that there are unique quaternion-valued 1-forms {φa

b\

a,b= 1,2} so that

(1.6) de —- ebφ .

Differentiating (1.6) we get

(1.7) dφy. -— —φ /\ φu

Differentiating (ea, eb)= 8ab, we get

or

(1.8) φ J + φ ^ - O , α, f tE{ l ,2} .

(1.6)—(1.8) will be referred to as the structure equations of W. From (1.8) we

see that at most 10 of the real components of the φ% can be independent. On

the other hand (eλ,e2): S Γ - > H 2 X H 2 i s a n imbedding by definition, so the

real components of the φa

b must span Tf<$at every/. Since dimR Tf^— 10, we

see that these 10 components actually yield a co-framing of 3F.
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We have a canonical map Ca: $-* C P 3 for each a — 1,2 defined as follows:

let Ca(f) = ea(f)CGCP3. For simplicity, we will concentrate on Cx, al-

though, as we will see in §2, C2 is also important. We immediately see that Cx

gives ^ t h e structure of an Sι X S3 bundle over CP 3 , where we have identified

Sι with the unit complex numbers and S3 with the unit quaternions. The

action is given by

/* {z,q) = {el9e2) {z,q) = (exz,e2q),

where z E C and q GH satisfy zz — qq — 1. If we set

(1.9)
φ\

φ\

φ 2
ωx+jω2

-ωj +jω2

iρ2+jφ2

where ρ{ and p 2 are real 1-forms while ωl9 ω2, φ,, and φ 2

 a r e complex valued,

then the formula

deλ =(eλj)φx + e2iύx + (e2j)ω29 m o d e ^ ,

shows that Cf(Ω1 '°CP3) = 0, modίφ^ ωl9 ω2}. We may rewrite part of the

structure equations relative to this Sι X S3-structure on C P 3 as

(1.10)

(1.11)

1 Φi
ωx

ω2

2ipx —ω2

<*2 '(Pi ~ P2)

- ω , - φ 2

Φi

p 2 ) /

Λ

dpx = i(φx Λ φ, + ωx Λ co, + ω2 Λ ω 2 ) .

[In an exactly analogous fashion, C|e(Ω ι'°CP3) Ξ O , mod{φ2, co1? ω 2), and

we have the formulas

(1.10')
Φ2

/ 2/p2

- ω 2

ω2

Λ
φ 2

1

ω 2ω, ΦΪ Ϊ ( P I + P2) /

(1.1Γ) dρ2 = i(φ2 A φ 2 H- ωx Λ ωx + ω2 Λ ω 2).]

The map ^ α : ff^ HP1 is defined for α = 1,2 by Ha(f) = ea(f)H G H P 1 .

Again, although the two maps are different, we will concentrate on Hx\ in fact,

once we have realized that HP1 ^ S4, then we will see that Hx- A ° H2 where

A: S4 -* S4 is the antipodal map. The formula

dex = e2ωx + (e2j)ω2 mod exH

shows that iίf(Ω1HP ι) = 0, mod{ω!, ω2, ω,, ω2}. In fact, Hx\ f ^ HP 1 gives ^

the structure of an S3 X 53-bundle over H P 1 where the action is given by

(eί9e2) - (qι,q2) = (eχ<l\>ei<li)>
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where qa G H satisfies qaqa = 1. The structure equations of H P 1 relative to

this S3 X 53-structure on HP 1 are

/ ω, \
1

ω 2

\ ω 2 /

(1.12)

(1.13)

i(p\ ~ Pi) 0 Φ 2 - φ !

0 ι(p 2 ~ Pi) - Φ i Φ2

- φ 2 φi /(Pi + P2) 0

Φi ~Φ 2 ° " ' ( P i + P2) I

/ C ύ j \

ω.

ω'2 /

Λ ( ω j ω j ω2 ω2 ) .

Λ

It follows that HP 1 , when endowed with the invariant metric ds2 —

4(cjj o coj -f ω2 ° ω2), is a space of constant curvature + 1 . The fibration

S3XS3

H P 1

shows that HP 1 is compact and simply connected. It must therefore be

isometric to the unit 4-sphere S4. We may go further and see that ^ is merely

the spin double cover of the oriented orthonormal frame bundle of HP 1 under

this metric (we give H P 1 the orientation determined by —ω{ Λ « , Λ ω2 Λ ω2).

For this reason, we will, from now on, speak interchangably of HP 1 and S4,

even though we have given no explicit isometry between them. For the sake of

explicitness and to simplify an argument in §2, we may write (1.12) and (1.1.3)

in real form by defining

(1.14)

(1.15)

and we get

Ψ\

"Ί

4
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d(η*) = d

W4!

(i i6) =- _::\ _.._.. " r 3 Λ / 2 Λ

0

~Mi "
- μ 2 -

. - μ 3 "

>s Λ *»*

f p,

(this

Mi - " i

0

- μ 3 - κ3

μ2 + v2

defines θj; =

βξ = -β; Λ θ6

μ2-v2

0

-Mi-"i

' + η e Λ η δ .

— ϊ'^

μ 2 - ^ 2

(1.17)

The verification of these formulas is routine and is left to the reader.
We now study how these maps are related to the fibration T: CP3 -> HP1.

Clearly T°Ca = Ha for a- 1,2. Note that the fibres of T are complex
submanifolds of CP3. It follows that the bundle ?Γof complex-linear 1-forms
on CP3 splits as a direct sum <3~ = Ύ θ % where % C Γ*( A'HP1) is the rank-2
complex bundle of semi-basic (for T) complex linear 1-forms and Ύ= %± is
the rank-one complex bundle dual to the vertical tangent bundle (for T) via
the standard metric on CP3.

Theorem A. The subbundle Ύ Q^ is a holomorphic line bundle over CP 3 .

Moreover, it induces a holomorphic contact structure on CP 3 , andΎ= L2, where

L is the universal line bundle over CP 3 .

Proof. Comparing the equations

C 1 * ( Ω 1 ' ° C P 3 ) Ξ O , modίφ^ω^ω,}

and

Ξ θ , mod{ω1,ω2,ω1,ω2),

we see that if σ: CP3 -> Ύis any section of Ύ, then

C*(σ)=Fφx

for some function F on <$. The structure equation

dφ} = 2ipx Λ φj + 2ωλ Λ ω2

gives

d(Fφx) = Λ Λ ω2,
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in particular,

so Fφx is locally a C00-multiple of a holomorphic form. Thus Ύis holomoφhic.
The formula

d(Fφx) Λ Fφλ = 2Fφλ Λ ω 1 Λ ω 2

shows that ί/σΛσ^Oifσ^O^soa holomorphic nonzero local section of Ύis
a local contact form.

Finally, for each/G SF, let e*(/) E (e1(/)C)* be the vector dual to e^/)
E e !(/)C. One easily computes that

σ(eι(f)C)=φ]®e*(f)®e*(f)

is a holomorphic nonzero well-defined section of Ύ® L* ® L*, where L is the
universal line bundle over CP3. Thus Ύ ^ (L) 2 as holomoφhic bundles.

Remark. We will verify this calculation in another way in §3, where we will
explicitly construct a meromorphic section of Ύ with a double pole along a
CP2 C CP3 and with no zeros.

2. Surface theory in HP1

Let X: M2 -> S4 = HP1 be an immersion of an oriented surface M2. (If M2

is not orientable, we pass to the orientation double cover and choose the
canonical orientation.) We let φ£ C M2 X ̂ be the set of pairs (/?,/) which
satisfy X(p) — Hλ{f). We have the diagram

\"
and φ£ is just the S3 X S3-bundle over M induced by the immersion X. Since
we will be working on S^ and its subspaces for some time now, we will omit
references to/* and write φa

b instead off*(φa

b) to denote forms on 5£.
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Because X ° p: 9£ -> SΛ has rank 2 at every point, and Hx o f = X o p by
definition, we see that the four real components of φ2 must satisfy two
relations. Moreover, since φ2 is semi-basic for Hx, it must be semi-basic for/?,
i.e., φ2 = 0, mod p*(QιM). Now we can compute in the standard way that

(2.1) * ^ 2 ) ( Φ i ) = ?iΦfo,

where (ql9 q2) G S3 X S3, and Λ ( ^ 2 ) : #£ -> #£ is the bundle right action.
The induced metric on Λf, namely Jf*(Λ2), satisfies

p*(X*(ds2)) = 4(ω, 0 ^ , ^ ( 0 2 0 « 2 ) .

We use this metric together with our chosen orientation to induce a compatible
complex structure on ΛΓ. Thus a 1-form a on M (with values in C) is of type
(1,0) if and only if \ia Λ α determines the correct orientation (when nonzero)
and a ° a = λX*(ώ 2) for some λ.

It is not difficult to see that we may define a subbundle

(2.3) <$x

x = {(/>, / ) G ̂ | ω 2 = 0 and ωx Ep*(Qι»M)}.

We leave the details to the reader. (Skeptics may check this most easily by
using the structure equations (1.16) and (1.17) in real form. Our adaptation is
just η3 = if — 0, and η1 Λ η2 forms an oriented basis of A2T*M.) The fiber of
p: % -> Λf2 is an Sι X Sι. The action is just

(2.4) (P,(*\>e2)) ' (Z\>Z2) = ( P » ( β l ^ l » β 2 z 2 ) ) »

where (p9 (el9 e2)) G 5^ and z^ ! = z2z2 = 1 with za G C.
With this in mind, we may define two "Gauss maps;" for a - 1,2, Γ£:

M2 -> CP3 is defined by

(2.5) Γ ί ( ^ ) = e f l ( / ) C E C P 3 ,

where ( / ι , / ) e ^ . The action (2.4) shows that this is well-defined. In fact,

one easily verifies that Γ£: M2 -> CP3 is smooth and immersive since we have

the formulas

(2.6) Γ o Γ l = X ,

(2.7) AoToT* = X,
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where A: S 4 -> S4 is the antipodal map. For example, we have the following

commutative diagrams:

Let L be the universal line bundle over CP 3, and let La

x — TX*(L) as an

Hermitian bundle with connection. If σ: M2 -» La

x is a section, then

(2.8) />*(*) = *«(/M/>,/) = V
for some function 5 well defined on §x. We give La

x the induced connection, so

that

(2.9) P*(vσ) = ea®(ds + ispa).

While there is no possibility of confusion, we will simply write La instead of

La

x. Since we are working over a Riemann surface M2, we know that there is a

unique holomorphic structure on If so that the above connection is compatible

(see [8]). Henceforth, when we speak of holomorphic bundles Lα, this is the

holomorphic structure we will mean. Thus a local section σ: V C M2 -» La

with/?*(σ) = eas will be holomorphic if and only if (ds + isρa) A ωλ = 0.

Now considering the structure equations (1.10) we see that X*(ds2) =
2ωx o 2ωl9 and

(2.10) rf(2ω1) = i ( p , - p 2 ) Λ 2 ω 1 .

Thus regarding the metric X*(ds2) as defining an Hermitian structure on

τ(M), the bundle of complex linear 1-forms on M, the covariant derivative of a

1-form a satisfyingp*(a) = ωλA, whereof E C 0 0 ^ 1 , satisfies

(2.11) p*(va) = « , β (aA + / ( P l - p2)A).

Proposition 2.1. τ(M) ^ L1 Θ (L 2 )* as holomorphic bundles over M.

Proof. The quantity σ(/>) = ωx(p9 f) ® e*(/) ® e 2 (/) is seen to be inde-

pendent of/and therefore defines a section σ: M -» τ(M) Θ (L1)* ® L2. Not
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only does σ never vanish, but one clearly has Vσ = 0, so σ is covariant

constant and, in particular, holomorphic. Thus τ(M) ® (L 1 )* 0 L 2 ^ C as

holomorphic bundles, q.e.d.

Now let us consider the equation ω2 = 0 on 5^. This forces

dω2 — -ίOj Λ φj — φ 2 Λ ωλ = 0.

It follows that there exist functions Λ, Bl9B2onΦχ satisfying

B2 -,
(2,2) |

(by Cartan's Lemma, if one likes).

Proposition 2.2. The immersion X: M2 -> S 4 w minimal iff A = 0.

Proof. Inspecting the structure equations (1.16) and (1.17) one sees that X

is minimal iff the two quadratic forms

II3 = {-μ2 + v2) o ηi - (μ3 + , 3 ) o η2 = ^ o η«?

// 4 = ( - μ 3 + v3) o ηi + (μ 3 + r 3 ) = ^ o

have zero trace with respect to / = (TJ 1)2 + (τj2)2. Inspecting (1.14) and (1.15)

together with (2.12), we see that the condition A — 0 is exactly the pair of

equations t r 7 // 3 = t r 7 // 4 = 0. q.e.d.

From now until we say otherwise, we shall assume that the immersion X:

M2 -> S 4 is minimal. Then equations (2.12) become

(2.13) φ, = 2 ? ^ , φ2 = B2ω{.

Proposition 2.3. The quantities σ, = ex ® eλ ® φ, αnrf ej ® ej ® φ 2 = σ2

represent holomorphic sections of (Lλ)2 ® T α«J ( L 2 * ) 2 ® T respectively. More-

over, the quantity Q = φx o φ2o ω] o ω^ is a holomorphic quarticform on M.

Proof. The fact that these quantities are well-defined on M is left to the

reader. The holomorphicity follows immediately from the structure equations.

For example, from (1.10) we get dφx = -2ipx Λ φ l 9 so (dBλ + ι(3p, - p2)Bλ)

Λ «j = 0. Thus dBλ — -i(3pι — p2)Bλ + B\ωλ. This immediately implies

d(eλ ® ̂ ! ® ω ^ j ) = flrOfl(e, ® e, ® ω, -® B[ωx) = 0. The remaining equa-

tions follow similarly.

Theorem B. The following are equivalent for a minimal immersion X:

M2 - SΛ:

(i)*i=0,

(ϋ) Tχi M -• C P 3 is holomorphic,

(iii) Γ | : M -+ C P 3 w an wίegrfl/ ofΎ.
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Proof. All of these follow immediately from the structure equation

dex = (ej)φx + e2ωx + e2jω2 mod exC

= (exj)Bxω2 + e2ωx mod exC,

valid on ̂  (see the proof of Theorem A), q.e.d.

We also have an analogous theorem for Γ£.

Theorem B'. The following are equivalent for a minimal immersion X:

M2 -* S4:

(i)σ2 = 0,

(ϋ) Γ£: M -• C P 3 is anti-holomorphic,

(iii) Γ£: M -* C P 3 is an integral ofΎ.

Proof. Omitted.

It follows that those minimal immersions satisfying Q = 0 fall into two

classes. These classes are not as distinct as they appear at first glance. If X:

M2 -> S4 is minimal and satisfies σ2 = 0, then one can show that A ° X:

M2 -• S4 satisfies σ1 = 0 (and conversely, of course). Thus it is reasonable to

concentrate on those immersions satisfying σ, = 0 when one wishes to study

those satisfying Q = 0.

We will say that an immersion satisfying Q = 0 is superminimal, and that

the immersion has positive (resp. negative) Spin if it satisfies σx = 0 (resp.

σ2 = 0).

Theorem C. If M ^ P1 as Riemann surfaces, then any minimal immersion X:

M -> S4 is superminimal. If X: M -> S 4 is superminimal with both positive and

negative spin, then X(M) C S4 is a geodesic 2-sphere.

Proof. If M ^ P ι , then every holomorphic quartic form is identically 0. If

X: M -> S4 is superminimal with both positive and negative spin, then both φ,

and φ 2 vanish identically, so II3 = II4 = 0. It is well-known that this implies

that X(M) C S4 is a geodesic 2-sphere.

Remark. This theorem was essentially known to Calabi [2] and Chern [5].

We now sum up our results in the main theorem of this section.

Theorem D. // X: M2 -> S4 is superminimal with positive spin, then Tx

x'.

M2 -> CP 3 is a holomorphic immersion which is an integral of the contact

structure Ύ. Conversely, if Φ: M2 -> C P 3 is a holomorphic curve which is an

integral of % and if R C M2 is the ramification divisor of Φ, then To Φ:

M — {R} -> S4 is a superminimal immersion with positive spin satisfying Γ} o φ

= Φ. Moreover, the metrics induced on M2 by Φ and by T ° Φ are the same.

Proof. One direction has already been done. Thus we may assume that Φ:

M2 -» CP 3 is a holomorphic curve which is an integral of % and that R = φ

by deleting points if necessary.
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Let ί φ C M X ί b e the set of pairs (/?,/) satisfying Φ(p) = Cx(f). We
have the diagram:

M
Φ

CP3

The map p: Φ° -> M makes %° into an Sι X ££7(2) bundle over M. The

assumption that Φ is an integral of Ύ implies that φx = 0 on ^ . In the usual

way, we may adapt frames to produce ^φ

] C %° consisting of those pairs

(/?, / ) e §φ for which ω2 = 0. Then (1.10) implies

dω2 = -φ 2 Λω, = 0 ,

so

φ 2 —

for some B2 E. C 0 0 ^ 1 . Now/?: %* -> M makes Sφ into an S 1 X

M. We now have the diagram
bundle over

with the equations

φ, = ω2 = 0, φ2 = 52i0!.

The structure equation deλ = e2ωv modeC (valid on S^1) together with the

fact that we have assumed Φ holomorphic implies that /?*(Ω10M) = 0,

modfίo1}. It is now immediate that % = ^τoΦ and that T ° Φ: M2 -+ S4 is a

superminimal immersion with positive spin. Moreover, the Kahler-form on

C P 3 pulls back to ^ as 2 / ^ Λ φ, + ωγ Λ ω} H- ω2 Λ ω2) which restricts to

2iωx Aωλ on §φ, but this is clearly the Kahler form associated to the metric

p*((T'o Φ)*(ώ 2 ) ) = 2ωx o 2ωv Further details are left to the reader, q.e.d.

In closing this section, we would like to remark that if Φ: M -» CP 3 is an

arbitrary holomorphic integral of Ύ, then Γ ° Φ will be a "generalized"

superminimal immersion with positive spin in the sense that it will have

"branch points" where Φ ramifies. It would be interesting to know if all



468 ROBERT L. BRYANT

"branch singularities" of superminimal varieties (in the appropriate sense of

the word " varieties," "currents" perhaps would do) arise in this way.

We conclude with the following theorem whose proof is obvious from the

fact that every holomorphic curve Φ: M2 -* CP 3 with M2 compact has

algebraic image (see [6]).

Theorem E. If M2 is a compact Riemann surface with a superminimal

immersion X: M2 -» S4, then X(M2) is an algebraic surface in S4.

Proof. Omitted.

Calabi [2] has noted that every minimal 2-sphere in Sn has total area an

integral multiple of 4ττ. By essentially the same reasoning, we establish the

following proposition:

Proposition 2.4. Let X: M2 -> S4 be a superminimal immersion (with posi-

tive spin, say), then vol(M 2) = 4πd where vol(M 2) is the volume of M2 in the

induced metric, and d is the degree of the algebraic curve Tχ(M2) C CP3.

Proof. This follows immediately from Theorem D and the Wirtinger theo-

rem stating that, up to a universal constant, the volume of an algebraic curve in

C P 3 is equal to its degree. One checks that the constant 4ττ is correct simply by

noting that if X: M2 -> S4 is the inclusion of a geodesic 2-sphere into S 4, then

vol(M 2) = 4ττ and, since Tι

x: S2 -> C P 3 is clearly a P 1 C CP 3 , we must have

d= 1.

3. Integral curves of the contact structure

In this section, we prove our main theorem by making a thorough study of

the holomorphic integrals of the system Ύon CP 3 .

First we prove a formula for a meromorphic section of Ύ. Let A3 C CP 3 be

the subset of [z0, zu z2, z3] E C P 3 where z 0 ¥= 0. We may uniquely coordi-

natize A3 by meromorphic functions z l 5 z2, z3 on CP 3 with a simple pole along

C P 2 = CP 3 - A3 so that (z,, z2, z 3 ): A3 -> C 3 is a bi-holomoφhism and

[1, Zj, z2, z 3 ]: A3 -> CP 3 is just the inclusion. Moreover, the Fubini-Study

metric form on C P 3 restricts to A3 to be of the form /931og|Z| 2 where

I Z | 2 = 1 + zxzλ + z2z2 + z3z3 (see [6]), up to a constant factor.

Proposition 3.1. Let f: A3 -> HP1 be the restriction of T to A3. Then the fiber

of f through the point [1, w,, w2, w3] is the line

ξ ^[\,w} + (1 + wxwλ)ξ9 w2 -f (w2wx - w3)ξ9 w3 + {w3wx + w2)ζ\.

It follows that the vector field

X = (l +Xιiί)^- + (z2z, - z 3 ) A + (z,z, + z 2 ) A
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is tangent to these fibers. The (1,0)-form dual to X under the Fubini-Study metric

is ώ = | Z\~2(dz} — z3dz2 + z2dz3).

Proof. By definition

for all q G H*. Consider q = (1 + wxξ) +jξ where ξ varies over C. We

compute

(w2 +jw3)q = (w2 + (w2wx - w3)ξ)

Since the fibers of f are complex lines, this establishes the first claim. The

second follows by differentiation with respect to ξ. In turn, the final claim

follows by elementary calculation using /39 log | Z | 2 as the Kahler form on A3.

Details are left to the reader, q.e.d.

By the above proposition, the form

ω = dzλ — z3dz2 + z2dz3

is a meromorphic section of Ύ. This form has a double pole along C P 2 = CP 3

— A3 and is nowhere zero on A3. This gives an alternate proof that Ύ is the

square of the universal line bundle over CP 3 . Note also that ω Λ dω does not

vanish on A3, so ω is a contact form on A3.

Theorem F. Let M2 be a connected Riemann surface, and let f and g be

meromorphic functions on M2 with g nonconstant. Let Φ(/, g): M2 -> CP 3 be

defined by

Hf,g)=[hf-ϊg(df/dg),g,\(df/dg)],

then Φ(/, g): M2 -> CP 3 is a holomorphic integral of Ύ. Conversely, any

nonconstant holomorphic integral of Ύ, Φ: M2 -» CP 3 , is either of the form

Φ(/, g) for some unique meromorphic functions f and g on M or Φ has image in

some CP1 C CP 3 .

Proof. First, write ω = d(zλ + z2z3) — 2z3dz2. It is now obvious that

Φ(/, g): M2 -> CP 3 is a holomorphic integral of Ύ for / and g as in the

hypotheses.

Conversely, suppose Φ: M 2 -* CP 3 is a holomorphic integral of Ύand write

Φ — [/o> f\> fi> ΛL where f0, fx, f29 f3 are meromorphic functions on M2. First,

assume f0 ^ 0, then we may divide all the fe by f0 so as to reduce to the case

f0 = 1. If f2 is a constant, say/2 = C, then the condition that Φ be an integral

reduces to d(f{ + / 2 / 3 ) = 0. Thus Φ = [1, a - cf3, c, f3] for some constant a,

so Φ(M) lies in a CP 1 . If f2 is not a constant, then set / = /, 4- f2f3 and g = f2.
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Then the condition d(fx + / 2 / 3 ) - 2f3df2 = 0 on M forces/3 = \(df/dg) and

then/! = / - \g(df/dg) so the claim is established. Now assume/0 = 0. If we

also had f{ = 0, then we would have Φ(Λf) C CP 1 again, so we may assume

fx^0 and divide by it to reduce to the case /0 = 0, fλ = 1. Let w0, w2, w3 be

meromoφhic functions on CP 3 which satisfy

[w o, l,w 2,w 3] = [ I , z 1 , z 2 , z 3 ]

on A3 - {zx~\0)}. We compute

ω = -w^2(dwQ + w3dw2 — w2rfw3),

so dw0 + w3rfw2 — w2dw3 represents Ύ o n the affine chart where the second

coordinate is nonzero. Since Φ = [0,1, /2, /3] is an integral of this form, we

must have

0+f3df2-f2df3 = 0.

In other words /2//3 = C for some constant C. Again, we conclude that

Φ(M) c CP1.

Remark. The lines P 1 c CP 3 which are integrals of Ύ represent the "Gauss

maps" of geodesic two-spheres in S4. They form a complex manifold isomor-

phic to Q3 C CP 4 , the complex hyperquadric.

We now prove our main theorem and its corollary.

Theorem G. Let M be a compact Riemann surface. There always exists a

(holomorphic) embedding Φ: M -» CP 3 which is an integral ofΎ.

Corollary H. Let M be a compact Riemann surface. There always exists a

conformal minimal (in fact, superminimal) genetically 1-1 immersion X: M2 -> S4

whose image X(M) is, in addition, an algebraic surface in S4.

Proof of Corollary H. Let Φ: M -» C P 3 be a holomorphic embedding of M

as an integral curve of Ύ: this exists by Theorem G. By Theorem D, Γ o φ ;

M -* S4 is a conformal minimal immersion of M into S4 as a superminimal

immersion with positive spin. If To φ were not generically 1-1, then Γ o φ

would be a covering map from M to T ° Φ(M). However, since Φ = Γ^o φ ,

this would imply that Φ: M -> CP 3 factors through this covering map and

therefore could not be 1-1. Finally, Theorem E shows that T ° Φ(M) C S4 is

an algebraic surface.

Proof of Theorem G. Fix a generically 1-1 immersion Ψ: M -> C P 2 so that

Ψ is holomorphic and β = Ψ(M) is an algebraic curve whose only singularities

are ordinary double points. By the Riemann-Roch theorem, this is always

possible (see [6]). Let Qo E C P 2 be a point which does not lie on β, any flex

tangent or bitangent to β, or the tangent cone to any double point of β. Let L

be a line through Qo which is not tangent to Q nor does it pass through any
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double point of β. Let Qx G L be a point distinct from Qo and not on 6. Let
{/>!,... ,/>fl) be the set of points in M so that Ψ(pa) E L for all 1 < a < 0. Let
{tf1?... ,qb] be the set of points in M so that the tangent to G at Φ(qβ) passes
through (2o f°Γ 1 ̂  /* < b. Finally, choose homogeneous coordinates on CP2

so that <20 = [0,1,0] and Qλ = [1,0,0], and write Ψ(p) = [g(/?), /(/?), 1] for
unique meromorphic functions g and / on M. We list the following conse-
quences of our assumptions:

(i) lip & {pa} U {qβ}, then/and g are holomorphic at/?, and dg does not
vanish at/?.

(ϋ) Both/and g have a simple pole at/?α. In fact, if we let z{p) — l/g(/?),
then z is a holomorphic coordinate near each /?α, and z(/?α) = 0. There exist
holomorphic functions Fa{z) for z near 0 so that

for/? near/?α. Because g 0 , ζ^ £ {pa} and L intersects C in distinct points, the
values {^(0)} are nonzero, finite, and distinct.

(iii) Near each qβ, there is a holomorphic coordinate z(/?), uniquely defined
up to sign, so that

g(p)=Aβ+(a(p))2/2,

f(p) = Fβ(z(p))

for unique constants Aβ and holomorphic functions Fβ{z) near z = 0. This
follows because dg only vanishes to first order (since Qo lies on no flex
tangent). Because Ψ is an immersion we have Fβ(0) Ψ 0. Since L is not tangent
to β and Qo lies on no bitangent, the Aβ are finite and distinct. We now claim
that Φ(/, g): M -> CP3 is an embedding. We show this in three cases.

Case i. From the formula for Φ(/, g), it follows that Φ(/, g)(/?) G A3 if
and only if p £ {pa} U {^}, and that dΦ(f, g) ̂  0 at p (since dg ̂  0 at /?).
If Φ(/, g)(/?) = Φ(/, g)(/O for/?, /?' <2 {/>α} U {ty}, then we obviously have

= g(p')> f(p)=f(p% fg(p) = fg

{pf)'

Thus Ψ(p) = Ψ(/?')> and the tangents at /? and /?' are the same. Since β has
only ordinary double points, it follows that/? = /?'.

Case ii. In terms of the holomorphic coordinate z — \/g near/?α, we get

thus rfΦ(/, g) 7* 0 at A and Φ(/, g)(/?α) = [0, Fα(0)/2,1,0].
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Case iii. In terms of the holomorphic coordinate z discussed in (iii) above,
we have for/? near qβ

Φ(/, g)=[z, zFβ - \gFβ9 zg, Fβ/l].

Since FtfO) ψ 0, we see that dΦ(f, g) φ 0 at/? = qβ. Furthermore Φ(/, g)(qβ)
= [0,-^,0,1] .

By Cases ii and iii, we see that the points {pa} U {qβ} are sent to distinct
points in CP2 = CP3 — A3. Combining this with Case i, we see that Φ(/, g):
M -» CP3 is one-to-one. Since we have also shown that it is an immersion, we
are done.

Remark. The formula appearing in Theorem F may be thought of as a sort
of " Weierstrass formula" establishing the equivalence of algebraic plane curves
6 C CP and holomorphic integrals of Ύin CP3. As a consequence, it is not
difficult to prove Plϋcker formulas for holomorphic integrals of Ύ completely
analogous to the classical Plϋcker formulas for plane algebraic curves. We
leave as an interesting problem the task of writing down these formulas for a
superminimal immersion in S4 with " traditional singularities" (see [6]). Some-
what more interesting is the fact that, for the purpose of finding examples, it is
not necessary to start with an abstract Riemann surface M. One may just as
well start with an implicitly defined curve 6 C CP2 given as the set of points
[X, 7,1] satisfying F(X, Y) = 0. The "Weierstrass" formula shows that the set
of points [Zo, Zv Z2, Z3] satisfying

F(X9Y) = 09

in CP3 is an integral of Ύ. This set of points is a curve in CP3 satisfying
polynomial relations which are computable from F by elimination theory. Thus
in principle one could start with F(X, Y) = 0 in CP2 and derive the algebraic
equations defining a surface in S4 (implicitly, of course) which is superminimal
and conformally equivalent to the given curve in CP2.
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