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Abstract

Twenty five years ago U. Pinkall discovered that the Korteweg-de Vries
equation can be realized as an evolution of curves in centoraffine geometry.
Since then, a number of authors interpreted various properties of KdV
and its generalizations in terms of centoraffine geometry. In particular,
the Bäcklund transformation of the Korteweg-de Vries equation can be
viewed as a relation between centroaffine curves.

Our paper concerns self-Bäcklund centroaffine curves. We describe
general properties of these curves and provide a detailed description of
them in terms of elliptic functions. Our work is a centroaffine counterpart
to the study done by F. Wegner of a similar problem in Euclidean geom-
etry, related to Ulam’s problem of describing the (2-dimensional) bodies
that float in equilibrium in all positions and to bicycle kinematics.

We also consider a discretization of the problem where curves are re-
placed by polygons. This is related to discretization of KdV and the
cross-ratio dynamics on ideal polygons.
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3 Self-Bäcklund curves: first study 17
3.1 Infinitesimal deformations of centroaffine conics . . . . . . . . . . 17
3.2 Rigidity: periods 3 and 4 . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Period two: flexibility and Radon curves . . . . . . . . . . . . . . 20
3.4 Centroaffine odd-gons and centroaffine carrousels . . . . . . . . . 22

∗School of Mathematical Sciences, Tel Aviv University, Israel; bialy@post.tau.ac.il
†CIMAT, A.P. 402, Guanajuato, Gto. 36000, Mexico; gil@cimat.mx
‡Department of Mathematics, Penn State University, USA; tabachni@math.psu.edu

1

ar
X

iv
:2

01
0.

02
71

9v
2 

 [
m

at
h.

D
G

] 
 7

 O
ct

 2
02

0



3.5 Case study: 10-periodic carrousels . . . . . . . . . . . . . . . . . 26
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1 Introduction

The motivation for this work is the interpretation of the Korteweg-de Vries
equation in terms of centroaffine geometry. This growing body of work started
with U. Pinkall’s paper [40], see [16, 26, 27, 47] for a sampler.

In [45], the Bäcklund transformation of the KdV equation is interpreted as
a relation between centroaffine curves. We start with a very brief description of
this approach to KdV.

Let γ(t) be a parametrized smooth curve in the affine plane with a fixed
area form. The curve is centroaffine if the Wronski determinant is constant:
[γ(t), γ′(t)] = 1 for all t ∈ R. The group SL2(R) acts on centroaffine curves,
and we shall also consider the moduli space of such curves. Unless specified
otherwise, we assume that the curves are π-anti-periodic: γ(t+ π) = −γ(t) for
all t. That is, the curve is closed, centrally symmetric and 2π-periodic (the last
condition can be arranged by an appropriate rescaling.)

The rationale for assuming that the curves are centrally symmetric is as
follows. An orientation preserving diffeomorphism of RP1 admits a unique area
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preserving and homogeneous of degree 1 lifting to a diffeomorphism of the punc-
tured plane. The image of the unit circle under such a diffeomorphism is a cen-
trally symmetric star-shaped curve, and projectively equivalent diffeomorphisms
correspond to SL2(R)-equivalent curves. See [38] for details.

Our results can be extended to non-centrally symmetric curves, but we do
not dwell on it in this paper.

Given a centroaffine curve, one has γ′′(t) = p(t)γ(t) where p is a π-periodic
potential function of the Hill operator −d2/dt2 + p(t). In the language of cen-
troaffine geometry, p is the centroaffine curvature of the curve γ (alternatively,
some authors call −p the centroraffine curvature, but we shall adopt the plus
sign convention).

For example, γ(t) = (cos t, sin t) has p(t) = −1. This unit circle, and its
SL2(R) images, are trivial examples of centroaffine curves. We refer to these
curves as centroaffine conics.

A tangent vector to a centroaffine curve γ(t) (in the space of centro affine
curves) is given by a vector field along it of the form g(t)γ(t)+f(t)γ′(t). Taking
the derivative of the centroaffine condition [γ, γ′] = 1 with respect to this vector
field we obtain f ′ + 2g = 0. Thus such a vector field has the form

Vf := −1

2
f ′(t)γ(t) + f(t)γ′(t), (1)

where f is a π-periodic function. Pinkall observed in [40] that the evolution
of the curves γ(t) with the potential function p(t) under the vector field Vp is
a centroaffine version of the Korteweg-de Vries equation: the potential evolves
according to the equation

ṗ = −1

2
p′′′ + 3p′p

(where dot is the time derivative).

Figure 1: Bäcklund transformation: as the end points of the line segment AB
trace the two curves, OA and OB sweep area whith the same rate and the area
of the shaded triangle OAB remains constant.

We say that two centroaffine curves, γ(t) and δ(t), are c-related if [γ(t), δ(t)] =
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c for all t. See Figure 1. It is shown in [45] that this relation is a geometric
realization of the Bäcklund transformation for the KdV equation.

In this paper we are mostly interested in self-Bäcklund centroaffine curves,
the curves γ(t) for which there exists α ∈ (0, π) and a constant c such that

[γ(t), γ(t+ α)] = c for all t. (2)

For example, the centroaffine conics are self-Bäcklund for every choice of α with
c = sinα. To exclude trivial cases, we assume that c 6= 0. We call α in equation
(2) the rotation number of a self-Bäcklund curve. See Figure 2 for examples of
self-Bäcklund curves.

Figure 2: Self-Bäcklund curves (blue), with winding numbers 1 (left) and 3
(right). A line segment (green) moves with its endpoints sliding along the curve,
forming a constant area triangle with the origin, while the midpoint of the line
segment traces a curve (red), always tangent to the line segment at its midpoint.
The two curves depicted here are members of an infinite family of self-Bäcklund
curves described explicitly in Section 4 in terms of the Weierstrass ℘-function.

An analogous problem in Euclidean geometry was thoroughly studied rel-
atively recently. The problem is to describe the closed smooth arc length
parametrized curves γ(t) ⊂ R2 for which there exist constants s and ` such
that |γ(t + s) − γ(t)| = ` for all t. For example, a circle is a trivial solution to
this problem.

Although the full solution of this problem is not available yet, there is a
wealth of results, including many non-trivial examples of such curves. See [12,
42, 44, 49, 50, 51] for a sampler.

This problem originated in two seemingly unrelated theories. First, such
curves are the boundaries of 2-dimensional bodies that float in equilibrium in
all positions – to describe such bodies (in all dimensions) is S. Ulam’s problem
in flotation theory, see [35], problem 19.

Second, an interesting problem in the study of a bicycle kinematics is to
describe the pairs of front and rear bicycle tracks for which one cannot determine
the direction of the bicycle motion. The above mentioned curves appear in this
problem as the front tracks in such ambiguous pairs; they are referred to as
bicycle curves. See [32] for a survey of this approach to bicycle kinematics.
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This geometric problem is intimately related to another completely inte-
grable equation of soliton type, the filament – or binormal, or smoke ring, or
local induction – equation; more precisely, to the planar filament equation.

Two arc length parametrized curves, γ(t) and δ(t), are in bicycle correspon-
dence if the length of the segment γ(t)δ(t) is constant and the velocity of its
midpoint is aligned with the segment for all t. This correspondence is a geomet-
ric realization of the Bäcklund transformation of the planar filament equation,
and in this sense, bicycle curves are self-Bäcklund.

We must say more about the work of Franz Wegner, cited above. He discov-
ered a large variety of bicycle curves (or solutions to the 2-dimensional Ulam’s
problem), explicitly described in terms of elliptic functions. Wegner made his
discovery by assuming that the desired solutions have a certain geometrical
property, resulting in a differential equation on their curvature, that was solved
in elliptic functions. Then he proved that indeed, for a proper choice of param-
eters, these curves solved the problem.

It is shown in [12] that Wegner’s curves are solutions to a variational problem:
they are buckled rings (the relative extrema of the elastic – or bending – energy,
subject to the length and area constraints), and they are solitons: under the
planar filament flow, they evolve by isometries.

Our main goal in this paper is to obtain centroraffine analogs of these results.
In the spirit of discrete differential geometry, we also consider centroaffine

polygons, a discretization of centroaffine curves. These are centrally symmetric
2n-gons P1, . . . , P2n such that [Pi, Pi+1] = 1 and Pi+n = −Pi for all i (the index
is understood cyclically). A centroaffine 2n-gon is a self-Bäcklund (n, k)-gon if
there exists a constant c such that [Pi, Pi+k] = c for all i. A trivial example
is an affine-regular 2n-gon which is a self-Bäcklund (n, k)-gon for all k. The
problem is to describe non-trivial self-Bäcklund (n, k)-gons.

These polygons are centroaffine analogs of the discretization of the bicycle
curves, the bicycle polygons, studied in [42, 46]. Some of the results on self-
Bäcklund (n, k)-gons in Section 5 were included in Section 7.3 of the original
(but not the final) version of [7], and were motivated by the study of the cross-
ratio dynamics on ideal polygons in the hyperbolic plane and hyperbolic space
therein.

Centroaffine polygons are closely related to linear second-order difference
equations with periodic solutions and with Coxeter’s frieze patterns, see [37].
In particular, given a simple centroaffine 2n-gon, the determinants [Pi, Pj ] with
|i − j| < n form the entries, all positive, of a frieze pattern of width n − 3. In
these terms, we are interested in frieze patterns that have a row consisting of
the same numbers, but not every row being constant.

A word about the terminology that we use. We call a closed smooth curve
star-shaped if every ray emanating from the origin intersects the curve trans-
versely and only once. A curve is locally star-shaped if the above property holds
locally, near every point. Equivalently, [γ(t), γ′(t)] 6= 0 for all t. Star-shaped
curves have winding number 1, but locally star-shaped curves can go around
the origin several times.
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The contents of this paper are as follows.
Section 2 concerns Bäcklund transformations of centroaffine curves. We de-

scribe a centroaffine analog of the rear track curve (in the above mentioned
bicycle setting). We also interpret the Miura transformation in terms of cen-
troaffine geometry.

Section 2.4 is devoted to the following problem: given a centroaffine curve
γ, for which c do c-related curves exist? We provide a complete answer to this
question. This result is a centroaffine analog of Menzin’s conjecture – now a
theorem, originally formulated for hatchet planimeters, but it also applies to
the bicycle model, see [32] or [24].

Section 3 comprises a variety of results on self-Bäcklund curves. In Theorem
3 we prove that a non-trivial infinitesimal deformation of a central conic as a
self-Bäcklund curve exists if and only if either α = π/2 or α satisfies the equation

tan(kα) = k tanα

for some integer k ≥ 4. A similar result is known for bicycle curves, see [42].
We show that the cases of α = π/3 and π/4 are rigid: only the central ellipses

are self-Bäcklund. In contrast, if α = π/2, one has a family of self-Bäcklund
centroaffine curves with functional parameters. Example 4.11 provides families
of analytic curves with rotation number π/2 and, at the same time, examples
of analytic Radon curves.

Sections 3.4 and 3.5 concern centroaffine carrousels, self-Bäcklund curves
with a rational rotation number (we call them carrousels because this term was
used in [14, 15] in the study of a similar problem in Euclidean geometry). We
describe centroaffine carrousels as closed trajectories of a certain Hamiltonian
vector field on the space of centroaffine 2n-gons. We provide details in the first
non-trivial case, n = 5. A similar approach to bicycle curves was developed
in [14, 15]. We also study the centroaffine curves that are c-related to central
ellipses.

Section 4 is the core part of the paper. We start by developing a centroaffine
analog of Wegner’s ansatz, that is, we guess what geometric properties self-
Bäcklund curves may possess. This leads to the assumption that these curves
correspond to the traveling wave solutions of the KdV equation, that is, their
centroraffine curvature is an elliptic function.

Thus we assume that the coordinates of our self-Bäcklund curves satisfy
the Lamé equation, the Hill equation whose potential is an elliptic function.
In Section 4.2 we construct these curves and describe the conditions on the
parameters for which the curves are self-Bäcklund. This work is analogous to
the one done by F. Wegner. In Section 4.3 we show that central conics indeed
admit a deformation into self-Bäcklund centroaffine curves for each α appearing
in Theorem 3.

Section 5 concerns self-Bäcklund centroaffine polygons. We describe a dis-
crete version of Bäcklund transformation on centroaffine polygons. Theorem 11
lists some pairs (n, k) for which non-trivial self-Bäcklund polygons do not exist,
and some pairs for which they do. We also describe necessary and sufficient
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conditions for the existence of non-trivial infinitesimal deformations of regular
centroaffine n-gons in the class of self-Bäcklund polygons. Similar results were
known for bicycle polygons, see [42].

In Appendix A we connect centroaffine geometry with another geometry
associated with the group SL2(R), two-dimensional hyperbolic geometry. We
assign to a centroaffine curve a curve in the hyperbolic plane, it dual. The
centroaffine curvature p of a curve and the curvature κ of its dual are related
by the equation (1 + p)(1 + κ) = 2.

Appendix B is a compendium of the formulas involving Weierstrass elliptic
functions that we use in the body of the paper.

Acknowledgments. We are grateful to L. Buhovsky, D. Fuchs, A. Izosi-
mov, M. Cuntz, A. Mironov, A. Sodin, and F. Wegner for fruitful discus-
sions. MB was supported by ISF grant 580/20, GB was supported by Conacyt
grant #A1-S-45886, ST was supported by NSF grants DMS-1510055 and DMS-
2005444.

2 Bäcklund transformations of centroaffine curves

2.1 The middle curve

Let γ(t) be a centroaffine curve satisfying γ′′(t) = p(t)γ(t). Construct a new
centroaffine curve δ(t) = f(t)γ(t) + g(t)γ′(t), where f(t) and g(t) are π-periodic
functions. The next lemma repeats Lemma 1.2 of [45].

Lemma 2.1. The curves γ and δ are c-related if and only if g(t) = c and

cf ′(t)− f2(t) + c2p(t) + 1 = 0. (3)

Proof. One has

c = [γ(t), δ(t))] = g(t)[γ(t), γ′(t)] = g(t),

and therefore g′(t) = 0. Next,

δ′(t) = (f ′(t) + p(t)g(t))γ(t) + (f(t) + g′(t))γ′(t),

hence
1 = [δ(t), δ′(t)] = f2(t)− c(f ′(t) + cp(t)).

This implies equation (3).

Note that equation (3) is a Riccati equation for the unknown function f(t).

Lemma 2.2. Let γ and δ be c-related and let Γ(t) be the midpoint of the segment
γ(t)δ(t). Then the velocity of Γ is aligned with this segment:

Γ′(t) ∼ δ(t)− γ(t)

for all t. In addition, Γ is locally star-shaped, that is, [Γ(t),Γ′(t)] 6= 0 for all t.
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Proof. Since [γ, γ′] = [δ, δ′] = 1 and [γ, δ] = c, one has

[γ′ + δ′, δ − γ] = [γ′, δ]− [δ′, γ] = [γ, δ]′ = 0,

as needed.
For the second statement, if [Γ(t),Γ′(t)] = 0 then the line connecting γ(t)

and δ(t) passes through the origin, and then c = 0.

Remark 2.3. The locus of midpoints in the previous lemma plays the role of
the rear bicycle track in the analogous problem mentioned in the Introduction.
This middle curve may have cusps.

We describe a method of constructing pairs of c-related curves. Start with a
locally star shaped curve Γ, with a centroaffine parameter s and curvature p(s),
so that [Γ,Γs] = 1, Γss = pΓ. Let γ± := Γ± (c/2)Γs. The condition [γ−, γ+] = c
is immediate; however, in general, s is not a centroaffine parameter for γ±.

Proposition 2.4. If c2p 6= 4 along Γ (for example, if Γ is locally convex,
that is, p < 0), then γ± can be simultaneously reparemetrized by a centroaffine
parameter t, so that [γ±, (γ±)t] = 1.

Proof. We calculate that [γ±, (γ±)s] = 1− (c2/4)p. If this does not vanish, then
the desired parameter t is defined by

dt

ds
= 1− c2p(s)

4
.

With this new parameter one has [γ±, (γ±)t] = 1, as needed.

Remark 2.5. As we mentioned, and as is seen from illustrations in this paper,
the middle curve Γ may have cusps. The above construction of the curves γ±
from Γ extends to the case when Γ has cusps and the curves γ± remain smooth.
Without going into details, we illustrate this with an example.

Let Γ(x) = (x2, x3 + 1) be a cusp, and let s be a centroaffine parameter.
Then Γx = (2x, 3x2) and

ds

dx
= [Γ,Γx] = x4 − 2x.

It follows that

γ± = Γ± c

2
Γs =

(
∓ c

2
, 1
)

+

(
0,∓3c

4

)
x+O(x2),

which, for c 6= 0 and x close to zero, are smooth curves.

Remark 2.6. Consider an oriented smooth closed strictly convex plane curve Γ.
The outer billiard transformation T is a map of its exterior, defined as follows:
given a point x, draw the oriented tangent line from x to Γ, and reflect x in the
tangency point to obtain the point T (x). See [21] for a survey.

The relation of our topic to outer billiards is as follows: if γ is a self-Bäcklund
curve and the respective middle curve Γ is convex, then γ is an invariant curve
of the outer billiard map about Γ.

8



2.2 Curves c-related to centroaffine conics

In this section we consider the curves that are c-related to centroaffine conics
and attempt to find self-Bäcklund curves among them. These curves will have
points at infinity.

Let γ(t) = (cos t, sin t), and let us construct a c-related curve as in Lemma
2.1: δ(t) = f(t)γ(t) + cγ′(t). The respective Riccati equation for the function f
is

cf ′(t) = f2(t) + c2 − 1. (4)

Assume that c > 1. This differential equation is easily solved:

f(t) = a tan

(
at

c

)
, where a =

√
c2 − 1 (5)

and a choice of the constant of integration has been made so that f(0) = 0 (any
other solution is obtained by a parameter shift).

The function f has poles (the same is true for the solutions with c < 1 and
c = 1), and the respective centroaffine curve goes to infinity, having there an
inflection point.

For example, let c = 5/3, a = 4/3, see Figure 3. This curve is periodic with
period 10π.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 3: The curve δ(t) =
(

4
3 tan

(
4t
5

)
cos t− 5

3 sin t, 4
3 tan

(
4t
5

)
sin t+ 5

3 cos t
)
.

Let us look for Bäcklund curves among the above curves δ.

Lemma 2.7. Let δ be the centroaffine curve c-related to the unit circle γ(t) =
(cos t, sin t), where c > 1. Then δ is self-Bäcklund with rotation number α, that
is, [δ(t), δ(t+ α)] =const, if and only if α satisfies

tan (uα) = u tanα, where u =

√
c2 − 1

c
. (6)
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Furthermore, given such an α, one has [δ(t), δ(t+ α)] = sinα.

Proof. The statement is invariant under parameter shift so it is enough to con-
sider δ = fγ + cγ′, where f is given by formula (5). Next, by a straightforward
calculation, the derivative of [δ(t), δ(t + α)] with respect to t is some non-zero
function times tan (uα) − u tanα. It follows that [δ(t), δ(t + α)] is constant if
and only if tan (uα) = u tanα. Using this equation for α, we calculate that
[δ(t), δ(t+ α)] = sinα.

In general, for a fixed u ∈ (0, 1), equation (6) has infinitely many solutions.
See Figure 4. If u is rational then δ is periodic and there are finitely many
solutions α within a period.

-6p -4p -2p 2p 4p 6p

-7p

-6p

-5p

-4p

-3p

-2p

-p

p

2p

3p

4p

5p

6p

7p

Figure 4: Solutions to equation (6), u tanα = tan(uα), u ∈ (0, 1), are given
by the intersection points of the (red) graph of the π-periodic function y =
tan−1(u tanα) − α + πn, πn − π

2 ≤ α ≤ πn + π
2 , n ∈ Z, and any of the (blue)

lines y = (u − 1)α + nπ, n ∈ Z. If u is rational then f = a tan(ut) is periodic
and δ is closed, self-Bäcklund with rotation numbers α given by the intersection
points within a period of f . In the figure above, u = 2/7, f is 7π-periodic, δ is
14π-periodic, and there are 8 solutions α ∈ (0, 14π) with sinα 6= 0.

-2 -1 1 2

-2

-1

1

2

Figure 5: The curve δ(t) =
(
− 4

5 tanh
(

4t
3

)
cos t− 3

5 sin t,− 4
5 tanh

(
4t
3

)
sin t+ 3

5 cos t
)
.

A solution of equation (4) for c < 1 is similar:

f(t) = −a tanh

(
at

c

)
,

where a2 = 1− c2. The associated c-related curve δ = fγ + cγ′ is non-periodic
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and stays bounded; it is self-Bäcklund with a parameter shift α satisfying

tanh (uα) = u tanα, where u =

√
1− c2
c

and the constant determinant is sinα. This equation admits infinitely many
solutions ±α1,±α2, . . . , with αn ∈ (nπ, nπ + π/2). For t → ±∞, the curve
approaches the unit circle, see Figure 5.

Another solution of (4) for c < 1 is

f(t) = −a coth

(
at

c

)
,

with the respective value of α given by

coth (uα) = u tanα, where u =

√
1− c2
c

and the constant determinant is sinα. There are infinitely many solutions here
as well, ±α0,±α1, . . . , with αn ∈ (nπ, nπ + π/2). This curve approaches the
unit circle as t→ ±∞ and goes to infinity as t→ 0. See Figure 6.

-4 -2 2 4

-4

-2

2

4

Figure 6: The curve δ(t) =
(
− 4

5 coth
(

4t
3

)
cos t− 3

5 sin t,− 4
5 coth

(
4t
3

)
sin t+ 3

5 cos t
)
.

If c = 1, a solution of equation (4) is f(t) = −1/t. This curve is self-Bäcklund
with a parameter shift α satisfying tanα = α and the constant determinant is
sinα. There are infinitely many solutions ±α1,±α2, . . . , with αn ∈ (nπ, nπ +
π/2). Its asymptotic behavior is the same as in the previous example, see Figure
7.

-4 -2 2 4

-4

-2

2

4

Figure 7: The curve δ(t) =
(
− 1
t cos t− sin t,− 1

t sin t+ cos t
)
.

For completeness, consider the case of a straight line γ(t) = (t,−1). This
centroaffine curve is self-Bäcklund for an arbitrary parameter shift. A c-related
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curve fγ + cγ′ has f(t) = − tanh(t/c), see Figure 8. This curve is not self-
Bäcklund: the respective equation on the parameter shifts b is

tanh

(
b

c

)
=
b

c
,

and the only solution is b = 0.

-4 -2 2 4

-4

-2

2

4

Figure 8: The curve δ(t) = (1− t tanh t, tanh t) (red), a Bäcklund transform of
the line y = −1 (black).

2.3 c-related curves and Miura transformation

The Miura transformation connects the Korteweg-de Vries equation u̇ = u′′′ +
6uu′ and the modified Korteweg-de Vries equation v̇ = v′′′− 6v2v′: if v satisfies
mKdV then u = −v′ − v2 satisfies KdV. More generally, if

u = −v′ − v2 + λ, (7)

and v satisfies
v̇ = v′′′ − 6v2v′ − 6λv′, (8)

then u satisfies KdV. See [25].
Given u, equation (7) is a Riccati equation on v, just like equation (3) on

the function f(t) that describes the curves, c-related to a centroaffine curve
with curvature p(t). This provides a geometrical interpretation of the Miura
transformation in centroaffine geometry.

The details are described by the next theorem.

Theorem 1. Let γ be a centroaffine curve, and δ = fγ+cγ′ be a c-related curve.
Let the curves γ and δ evolve by the KdV flow. Then they remain c-related, and
the function f evolves according to a version of mKdV:

ḟ = −1

2
f ′′′ +

3

c2
(f2 − 1)f ′.

Proof. Let q be the centroaffine curvature of δ, that is, δ′′(t) = q(t)δ(t). Then
γ̇ = Vp, δ̇ = Vq, where we use the notation as in equation (1).
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We start with the observation that γ = fδ − cδ′, and then we express the
curvatures p and q from equations (3) as follows

p =
1

c2
(f2 − 1− cf ′), q =

1

c2
(f2 − 1 + cf ′) (9)

(compare with Lemma 3.1 in [45]). It follows that

q − p =
2

c
f ′, p′ + q′ =

4

c2
ff ′. (10)

That γ and δ remain c-related under the KdV flow follows form the fact
the c-relation commutes with the KdV flow, see [45]. Here is an independent
verification.

We have: δ′ = (f ′ + cp)γ + fγ′, and

[γ, δ]· = [Vp, δ] + [γ, Vq] =[−0.5p′γ + pγ′, δ] + [γ,−0.5q′δ + qδ′] =

− 0.5c(p′ + q′) + f(q − f) = 0,

the last equality due to equation (10).
To calculate ḟ , note that f = [δ, γ′]. Then

ḟ = [δ̇, γ′] + [δ, γ̇′] = [Vq, γ
′] + [δ, V ′p ] = [−0.5q′δ + qδ′, γ′] + [δ, (−0.5p′γ + pγ′)′].

After substituting the values of p and q and their derivatives in terms of f from
equation (9) and collecting terms we obtain the stated equality.

One can expand a periodic solution of equation (3) in a power series in c:

f = 1 +
c2

2
p+

c3

4
p′+

c4

8
(p′′ − p2) +

c5

16
(p′′′ − 8pp′)

+
c6

32
[p

′′′′ − 10pp′′ − 9(p′)2 + 2p3] + . . .

Given the relation of f with the Miura transformation, one has the next state-
ment; see Section 1.1 of [25].

Corollary 2.8. The integrals of the odd terms of this series vanish, and the
integrals of the even terms are integrals of the KdV equation:∫ π

0

p dt,

∫ π

0

p2 dt,

∫ π

0

(
p3 +

1

2
(p′)2

)
dt, . . .

See [12], Section 3.3 for a similar statement about the bicycle transformation
and the filament equation.
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2.4 Range of the parameter c

The aim of this section is to describe, for a given centroaffine closed π-anti-
symmetric curve γ(t), the range of the parameter c for which γ admits closed
centroaffine c-related curves. The main result is Theorem 2 below, describing
this range (a closed interval) in terms of the lowest eigenvalue of a Hill equation
associated with γ. For a convex γ we obtain as a corollary an upper bound on c
in terms of the area enclosed by its dual curve γ∗. This result can be viewed as a
centroaffine analog of Menzin’s conjecture for hatchet planimeters (equivalently,
bicycle monodromy), discussed and proved in [32].

As we saw in Lemma 2.1, finding a centroaffine curve c-related to a given
curve γ amounts to finding a solution f(t) to the Riccati equation

cf ′ − f2 + c2p(t) + 1 = 0, (11)

where p = [γ′′, γ′] (the centroaffine curvature of γ). The corresponding c-related
centroaffine curve is δ = fγ + cγ′. If γ is π-anti-symmetric then p in equation
(11) is π-periodic and we are looking for the values of the parameter c for which
the equation admits a π-periodic solution, so that δ is π-anti-symmetric as well.
Note that for c = 0 the equation admits the trivial solution f ≡ 1.

Our study of the Riccati equation (11) is based on its relation with the Hill
equation

y′′ + (λ− p(t))y = 0. (12)

To state this relation we recall first that a solution y(t) of (12) is called
π-quasiperiodic if y(t + π) = µ y(t) for all t and some µ ∈ R, µ 6= 0, called the
Floquet multiplier of y(t). If µ = 1 then the solution is π-periodic and if µ = −1
it is π-antiperiodic.

Proposition 2.9. The Riccati equation (11) with a π-periodic p(t) admits a π-
periodic solution f(t) for a parameter value c 6= 0 if and only if the Hill equation
(12) admits a positive π-quasiperiodic solution y(t) for λ = −1/c2.

Proof. Indeed, if there exists such y(t), then f := −cy′/y is a periodic solution
of equation (11). In the opposite direction: if f is a periodic solution of equation
(11) and F is a primitive of f then y := e−F/c is the required solution of equation
(12).

We now borrow a well-known result from the general theory of the Hill
equation, due to Lyapunov and Haupt (ca. 1910, see Theorem 2.1 on page 11
of [33]).

Theorem (Spectrum of the Hill operator). Consider equation (12),

y′′ + (λ− p(t))y = 0,

where y(t) is an unknown real function, p(t) is a real π-periodic function and λ
a real parameter. Then there exist two unbounded sequences of real numbers

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . ,

µ0 ≤ µ1 < µ2 ≤ µ3 < µ4 ≤ . . . ,
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satisfying

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < λ3 ≤ λ4 < . . . , (13)

such that equation (12) has a non-trivial π-periodic solution if and only if λ =
λk, and a π-anti-periodic non-trivial solution if and only if λ = µk, k = 0, 1, . . . .
The number of zeros on [0, π) of a solution corresponding to λ2k−1 or λ2k is 2k.
In particular, if a π-periodic solution has no zeros, then λ = λ0. Similarly, the
number of zeros on [0, π) of a non-trivial solution corresponding to µ2k or µ2k+1

is 2k+1. Moreover, a solution to equation (12) is unstable (that is, unbounded)
if and only if λ belongs to one of the intervals (−∞, λ0), (µ0, µ1), (λ1, λ2), . . .
(called instability intervals, or ‘gaps’). See Figure 9.

Figure 9: The spectrum of Hill’s equation (12), stability and instability intervals.

Concerning the lowest eigenvalue λ0, we have the following.

Lemma 2.10. Let λ0 be the first eigenvalue of the spectrum (13) of the Hill
equation (12) associated with a π-antisymmetric centroaffine curve γ. Then

λ0 < 0, λ0 ≤ −P,

where

P := − 1

π

∫ π

0

p(t) dt. (14)

Proof. Each of the two coordinate components of γ is a non-trivial π-anti-
periodic solution of equation (12) for λ = 0. This implies that µk = 0 for
some k ≥ 1, hence λ0 < 0.

The inequality λ0 ≤ −P is due to Borg (see Theorem 3.3.1 of [23]). The
following argument is due to Ungar: Take a positive periodic solution y(t) of
equation (12) corresponding to λ0. Then h(t) = y′(t)/y(t) is a periodic solution
of the Riccati equation h′ + h2 + (λ0 − p(t)) = 0. Integrating this equation over
the period gives: ∫ π

0

(λ0 − p(t))dt ≤ 0.

This yields the result.

Remark 2.11. If γ is locally convex, so that p(t) is strictly negative, then
P > 0 and we have λ0 ≤ −P < 0. The geometric meaning of P is the area
bounded by the dual curve γ∗ (we refer to [29] and [43] for this and related
facts).
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Theorem 2. Let γ be a centroaffine π-anti-symmetric curve and λ0 < 0 the
lowest π-periodic eigenvalue of the associated Hill equation (12). Then γ admits
a c-related closed curve if and only if |c| ≤ 1/

√
−λ0.

An immediate consequence of this theorem and Lemma 2.10 is the following.

Corollary 2.12. Suppose P > 0 (for example γ is locally convex) and γ admits
a c-related π-anti-periodic closed curve. Then |c| ≤ 1/

√
P .

Proof of Theorem 2. By Proposition 2.9, we need to show that equation (12)
admits a π-quasiperiodic positive solution if and only if λ ≤ λ0.

Consider first the “if” part. If λ = λ0 then equation (12) has a positive
periodic solution, hence quasi-periodic. So we shall assume now that λ < λ0. In
this case equation (12) has no conjugate points, that is, a non-trivial solutions
vanishing at two distinct points t1, t2 because, by the Sturm Comparison The-
orem, any solution for every larger λ must have a zero between t1, t2. However
for λ0 there is a positive periodic solution. To complete the proof of the “if”
part we make use of the following lemma.

Lemma 2.13. The equation y′′ + q(t)y = 0, where q(t + π) = q(t), has no
conjugate points if and only if it admits a positive π-quasiperiodic solution.

As far as we know, this lemma is due to E. Hopf [30]. For completeness, we
give its proof below.

Now we prove Theorem 2 in the opposite direction. We need to show that
equation (12) admits no positive π-quasiperiodic solution for λ > λ0. Assume
y(t) is such a solution, y(t+ π) = µ y(t), where µ > 0. There are two cases:

• If µ = 1 then y(t) is a positive periodic solution. But this is possible only
for λ = λ0, a contradiction.

• If µ 6= 1 then the solution y(t) is unbounded, and hence λ belongs to one
of the instability zones. In particular, λ > µ0. But then, by the Sturm
Comparison Theorem, y(t) cannot be positive since solutions for µ0 have
zeroes.

This completes the proof of Theorem 2.

Proof of Lemma 2.13 (after E. Hopf). If a Hill equation y′′ + q(t)y = 0 has
no conjugate points then for every two distinct a, b ∈ R there exist a unique
solution y(t; a, b) satisfying

y(a; a, b) = 1, y(b; a, b) = 0.

By uniqueness, one has the relation for distinct a, a′:

y(t; a, b) = y(a′; a, b)y(t; a′, b). (15)

Using disconjugacy, one can show that a limiting solution exists and is positive
everywhere:

y(t; a) := lim
b→+∞

y(t; a, b).
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These positive solutions are π-quasiperiodic. Indeed, setting a′ 7→ a+π, t 7→
t+ π in equation (15)) and passing to the limit b→ +∞, we get

y(t+ π; a) = y(a+ π; a)y(t+ π; a+ π) = y(a+ π; a)y(t; a), (16)

where the last equality is due to the π-periodicity of q(t). Thus, y(t; a) is π-
quasiperiodic with multiplier µ = y(a+ π; a), as needed.

In the opposite direction the claim is obvious: if y′′ + q(t)y = 0 admits
a positive solution then, by the Sturm Oscillation Theorem, any non-trivial
solution has no conjugate points.

3 Self-Bäcklund curves: first study

3.1 Infinitesimal deformations of centroaffine conics

In this section we study infinitesimal deformations of centroaffine conics in the
class of self-Bäcklund centroaffine curves. Later, in Section 4.3, we shall show
that these infinitesimal deformations correspond to actual ones.

Here is a brief reminder about deformations. Let γ(t) be a self-Bäcklund
centroaffine curve,

[γ, γ′] = 1, [γ(t), γ(t+ α)] = c, (17)

for some α, c. A deformation of such a curve, within the class of self-Bäcklund
centroaffine curves with rotation number α, is a function Γ(t, ε), defined on
R× (−ε0, ε0) for some ε0 > 0, satisfying equation (17) for each fixed ε for some
c, and such that γ = Γ(·, 0). (Note: c may vary with ε, but not α.)

An infinitesimal deformation of γ is a formal expression Γ = γ(t) + εδ(t),
satisfying equation (17) for each ε, modulo ε2. Clearly, if Γ is a deformation of
γ, than its first jet γ+ε ∂

∂ε

∣∣
ε=0

Γ, is an infinitesimal deformation of γ. However,
the converse is not necessarily true, that is, given an infinitesimal deformation
γ + εδ, it is not clear a priori that there exists an ‘actual’ deformation Γ of γ
such that δ = ∂

∂ε

∣∣
ε=0

Γ.
An infinitesimal deformation is trivial if it is induced by a shift of the ar-

gument, Γ(t, ε) = γ(t + aε), or by the action of SL2(R), Γ(t, ε) = eεAγ(t),
A ∈ sl2(R).

Now let γ(t) = (cos t, sin t) and let Γ = γ(t)+εδ(t) be an infinitesimal defor-
mation of γ within the class of self-Bäcklund centroaffine curves with rotation
number α.

Theorem 3. 1. A non-trivial infinitesimal deformation of γ exists within
the class of self-Bäcklund curves with rotation number α if and only if
either α = π/2, or α 6= π/2 and α satisfies the equation

tan(kα) = k tanα (18)

for some integer k ≥ 4.
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2. For k ≥ 2, there are exactly k−2 solutions of equation (18) in the interval
(0, π), counting also α = π/2 as a solution for k odd.

Proof. 1. Note that

[γ′(t), γ(t+ α)] = − cosα, [γ(t), γ′(t+ α)] = cosα. (19)

We make calculations mod ε2.
The first equation (17) means that δ is a vector field along γ, hence δ =

−(1/2)g′γ + gγ′ for a π-periodic function g(t), see equation (1).
The second equation (17) implies

[δ(t), γ(t+ α)] + [γ(t), δ(t+ α)] = const,

hence

[−(1/2)g′(t)γ(t) + g(t)γ′(t), γ(t+ α)]+

+ [γ(t),−(1/2)g′(t+ α)γ(t+ α) + g(t+ α)γ′(t+ α)] = const.

In view of equation (19), this implies

(1/2)(g′(t) + g′(t+ α)) sinα− (g(t+ α)− g(t)) cosα = const. (20)

Since the integral of the left hand side over the period is zero, the right hand
side is also zero.

Recall that g is a π-periodic function and let

g(t) =

∞∑
k=−∞

ake
2ikt

be its Fourier expansion, with a−k = āk. Then

g′(t) = 2i

∞∑
k=−∞

kake
2ikt, g(t+ α) = e2inα

∞∑
k=−∞

ake
2ikt,

g′(t+ α) = 2ie2ikα
∞∑

k=−∞
kake

2ikt.

Substitute in equation (20) to conclude that

ak
[
i(1 + e2ikα)k sinα− (e2ikα − 1) cosα

]
= 0

for each k. Hence ak = 0, unless

i(1 + e2ikα)k sinα = (e2ikα − 1) cosα,

or

k
eikα + e−ikα

2
sinα =

eikα − e−ikα
2i

cosα,
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that is, k tanα = tan(kα).
Conversely, if equation (18) holds, then one can choose g(t) to be a pure

harmonic of order 2k, and then equation (17) holds modulo ε2. Likewise, if
α = π/2, one can choose g(t) to be a pure harmonic of order 2k with odd k ≥ 3
or a linear combination of such harmonics.

Note that equation (18) holds trivially for k = 0 and k = 1. The former case
corresponds to g(t) being constant, a shift of the argument of γ(t). The latter
case corresponds to the action of sl(2,R), a stretching of the unit circle to an
ellipse bounding area π.

2. See Proposition 2 of [28], or Lemma 4.8 of [12].

Remark 3.1. Equation (18) appeared in the context of bicycle kinematics in
[42, 12] and in the papers by Wegner, summarized in [49]. It also appeared in
[28] in the context of billiards and flotation problems, and in [9], [10], [11] for
magnetic, outer and wire billiards. This ubiquitous equation has a countable
number of solutions but, except for π/2, there are no π-rational solutions [19].

3.2 Rigidity: periods 3 and 4

Theorem 4. Let γ(t) be a π-antisymmetric self-Bäcklund centroaffine curve,
that is, [γ(t), γ(t+ α)] = c 6= 0. If α = π/3 or α = π/4 then γ is a centroaffine
ellipse.

Proof. Consider the case of α = π/3. Let us use the shorthand notation

γ(t) = γ0, γ
(
t+

π

3

)
= γ1, γ

(
t+

2π

3

)
= γ2.

Then
[γ0, γ1] = [γ1, γ2] = [γ2,−γ0] = c,

hence [γ0, γ2] = [γ0, γ1], and the vector γ1 − γ2 is collinear with γ0. Likewise,
γ2 + γ0 is collinear with γ1, and γ1 − γ0 with γ2. We write

γ1 − γ2 = ϕ0γ0, γ2 + γ0 = ϕ1γ1, γ1 − γ0 = ϕ2γ2.

Since [γ0, γ1] 6= 0, the linear map R3 → R2, (x0, x1, x2) 7→∑
xiγi, has rank

2, hence nullity 1. It follows that the matrix−ϕ0 1 −1
1 −ϕ1 1
−1 1 −ϕ2


has rank 1, hence ϕ0 = ϕ1 = ϕ2 = 1. Thus γ2 = γ1 − γ0.

It follows that γ′2 = γ′1 − γ′0, and hence

1 = [γ2, γ
′
2] = [γ1 − γ0, γ

′
1 − γ′0] = 2− [γ0, γ

′
1] + [γ′0, γ1].
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Since [γ0, γ1] = c, one has [γ′0, γ1] + [γ0, γ
′
1] = 0. This implies that

[γ0, γ
′
1] =

1

2
, [γ′0, γ1] = −1

2
,

and hence γ1 = (1/2)γ0 + cγ′0.
It follows that in equation (3) one has f = 1/2, and hence, by Lemma 2.1,

c2p = −3/4. That is, p is constant, which implies p = −1 and c =
√

3/2, and
therefore the curve is a centroaffine conic.

The case α = π/4 is similar. In analogous notations, one has

[γ0, γ1] = [γ1, γ2] = [γ2, γ3] = [γ3,−γ0] = c,

hence
γ0 ∼ γ1 − γ3, γ1 ∼ γ0 + γ2, γ2 ∼ γ1 + γ3, γ3 ∼ −γ0 + γ2.

This implies
γ1 = g(γ0 + γ2), γ3 = g(γ2 − γ0) (21)

for some function g(t).
Since [γ1, γ

′
1] = [γ3, γ

′
3] = 1, equation (21) implies

2g2 = 1, [γ0, γ
′
2] + [γ2, γ

′
0] = 0.

But [γ0, γ2] = c, hence [γ′0, γ2]+[γ0, γ
′
2] = 0, and therefore [γ′0, γ2] = [γ0, γ

′
2] = 0.

In particular, γ2 ∼ γ′0.
It follows that γ1 = (1/

√
2)γ0 + cγ′0. Then, in equation (3), one has f =

1/
√

2, and hence, by Lemma 2.1, c2p = −1/2. Thus p = −1, c = 1/
√

2, and the
curve is a centroaffine conic.

Remark 3.2. An analogous result, rigidity for periods 3 and 4, holds for bicycle
curves, see [14, 15, 42].

3.3 Period two: flexibility and Radon curves

In this section we show that self-Bäcklund curves of period two, that is, α =
π/2, exhibit a substantial flexibility. A similar result for Ulam’s flotation in
equilibrium problem was known for a long time [8, 52].

Let us construct a self-Bäcklund curve of period two as a closed trajectory of
a vector field V on the space of origin-centered parallelograms. Let the vertices
be P1, P2,−P1,−P2, and let the vector field have the values V1, V2,−V1,−V2 at
these vertices, respectively.

We want the trajectories of the points P1, P2,−P1,−P2 to coincide and to
form a self-Bäcklund curve with α = π/2. Let (P1(t), P2(t)) be an integral curve
of such a vector field. Then P2(t) = P1(t + π/2). The centroaffine conditions
[Pi, P

′
i ] = 1 and the c-relation [P1, P2] = c amount to

[P1, V1] = [P2, V2] = 1, [V1, P2] + [P1, V2] = 0. (22)

Note that the area of the parallelogram (P1, P2,−P1,−P2) remains constant.
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Lemma 3.3. Equations (22) are satisfied if and only if

V1 = fP1 +
1

c
P2, V2 = −1

c
P1 − fP2,

where f(P1, P2) is an odd function, in the sense that f(P2,−P1) = −f(P1, P2).

Proof. Write V1 = fP1 + gP2, V2 = f̄P1 + ḡP2 and substitute into equations
(22), using [P1, P2] = c, to obtain f + ḡ = 0, g = −f̄ = 1/c. That f is odd
follows from the central symmetry of the parallelogram.

Thus one has a functional parameter f to play with. The boundary condi-
tions

P1(0) = (1, 0), P1

(π
2

)
= P2(0) = (0, c), P2

(π
2

)
= −P1(0) = (−1, 0) (23)

impose a finite-dimensional restriction on the function f . As a result, we obtain
a functional space of self-Bäcklund curves of period two.

For example, if f is identically zero and c = 1, then P ′′1 = P ′2 = −P1, and
the curve is a centroaffine ellipse. See Figure 10 for a non-trivial example. In
Example 4.11 below (Figure 17) we construct explicitly many analytic examples.

-2 -1 1 2

-2

-1

1

2

Figure 10: A self-Bäcklund curve with rotation angle α = π/2 and c = 1, using
Lemma 3.3 and equation (23), where f(P1, P2) = u(P1)u(P2) and u(x, y) =
1.2x− 4x3 − 4x5 (approximately).

Remark 3.4. The space of origin-centered parallelograms of a fixed area is
identified with SL2(R). If P = (p1, p2), Q = (q1, q2), then the first equation
(22), [P,U ] = [Q,V ], means that the curve under consideration is tangent to
the kernel of the 1-form p1dp2 − p2dp1 + q2dq1 − q1dq2. This form defines a
contact structure on SL2(R), and the curve is Legendrian.

Let Γ be a smooth closed convex curve, symmetric with respect to the origin.
Let x, y ∈ Γ. One says that y is Birkhoff orthogonal to x if y is parallel to
the tangent line to Γ at x. This relation is not necessarily symmetric; if it is
symmetric, then Γ is called a Radon curve. Radon curves comprise a functional
space, with ellipses providing a trivial example.
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Radon curves have been thoroughly studied since their introduction more
than 100 years ago; see [34] for a modern treatment.

Let Γ be a Radon curve, x ∈ Γ be a point, and y ∈ Γ be its Birkhoff
orthogonal. Then the tangent lines at points x, y,−x,−y form a parallelogram
circumscribed about Γ. As x traverses Γ, the vertices of the parallelogram
describe a curve γ. The latter curve is an invariant curve of the outer billiard
transformation about Γ, see Remark 2.6.

The relation of self-Bäcklund curves with Radon curves is as follows. Let γ
be a self-Bäcklund curve with rotation number π/2, then the points γ(t), γ(t+
π/2), γ(t + π), γ(t + 3π/2) form a parallelogram. Therefore the middle curve
Γ is a Radon curve. Example 4.11 below provides analytic families of Radon
curves.

3.4 Centroaffine odd-gons and centroaffine carrousels

In this and the next section we extend the approach of the preceding section to
centroaffine polygons with a greater number of sides. This material is closely re-
lated to results in chapters 6 and 7 of [7] where similar questions about polygons
in RP1 were studied. Some formulas obtained in [7] simplify when expressed in
terms of centroaffine polygons.

Denote by Pn the space of centroaffine 2n-gons, and let Qn = Pn/SL2(R)
be the moduli space of centroaffine 2n-gons. We assume that n is odd.

Let γ(t) be a self-Bäcklund curve with α = π/n. Then one has a centrally
symmetric 2n-gon P(t) that revolves inside γ in such a way that [Pi, P

′
i ] = 1

and [Pi, Pi+1] = c for all i. Rescaling the polygon by the factor 1/c and also
rescaling the parameter, one obtains a vector field (Vi) on Pn, characterized by
the equations

[Pi, Vi] = 1 and [Vi, Pi+1] + [Pi, Vi+1] = 0 (24)

for all i. We want to construct a self-Bäcklund curve with α = π/n as a periodic
trajectory of this vector field. We call the resulting closed curves in the space
of centroaffine polygons centroraffine carrousels.

The vertices of a centroaffine 2n-gon satisfy a discrete Hill’s equation

Pi+1 = aiPi − Pi−1,

and the n-periodic coefficients ai uniquely determine the polygon up to SL2(R)-
equivalence. One has ai = [Pi−1, Pi+1]. The determinants [Pi, Pj ] are the entries
of a frieze pattern of width n− 3, whose first row comprises the coefficients ai,
see [37].

The following lemma determines the desired vector field.

Lemma 3.5. One has

Vi =
1

2
(ai − ai+1 + . . .+ ai+n−1)Pi − Pi−1,

where the indices are understood periodically mod n.
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Proof. To solve equation (24), write

Vi = uiPi + ūiPi+1 = viPi + v̄iPi−1. (25)

Then equation (24) imply that ūi = −v̄i = 1, ui + vi+1 = 0. Equating the two
expressions for Vi yields

Pi+1 = (vi − ui)Pi − Pi−1,

hence vi − ui = ai, and therefore vi+1 + vi = ai.
If n is odd, this system of linear equations has a unique solution:

vi =
1

2
(ai − ai+1 + . . .+ ai+n−1). (26)

Substitute to equation (25) to obtain the result.

Denote this vector field by ξ. Then ξ commutes with the action of SL2(R)
and descends, as a field ξ̄, to Qn, that is, the space of frieze patterns of width
n− 3.

Remark 3.6. In the ai-coordinates in Qn, one has

ξ̄ =

n∑
i=1

ai(ai+1 − ai+2 + . . .− an+i−1)
∂

∂ai
.

The space of frieze patterns of even width has a symplectic structure provided
by the theory of cluster algebras, see [37]. The field ξ̄ is Hamiltonian with
respect to this symplectic structure with the Hamiltonian function

∑
ai. The

field ξ̄ coincides with the dressing chain of Veselov-Shabat, see formula (12) in
[48]. The vector field ξ is completely integrable, see [48] and Section 5.8 of [7].

Let (x, y) be coordinates in the plane. Let Pi = (xi, yi), then pi = yi/xi are
the projections of Pi to RP1. In [7] a closed 2-form ω of corank 1 on the space
of n-gons in RP1 was constructed

λ =
1

2

n∑
i=1

dpi + dpi+1

pi+1 − pi
, ω = dλ =

n∑
i=1

dpi ∧ dpi+1

(pi − pi+1)2
.

We express ω in terms of the coordinates xi, yi, i = 1, . . . , n.

Lemma 3.7. One has ω =
∑

(dxi+1 ∧ dyi + dxi ∧ dyi+1).

Proof. One has
xiyi+1 − xi+1yi = 1, i = 1, . . . , n. (27)

therefore pi+1 − pi = 1/(xixi+1).
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Hence

2λ =
∑

xixi+1

(
xidyi − yidxi

x2
i

+
xi+1dyi+1 − yi+1dxi+1

x2
i+1

)
=

∑(
xi+1dyi + xidyi+1 −

xi+1yi
xi

dxi −
xiyi+1

xi+1
dxi+1

)
=∑(

xi+1dyi + xidyi+1 −
xiyi+1 − 1

xi
dxi −

xi+1yi + 1

xi+1
dxi+1

)
=∑

(xi+1dyi + xidyi+1 − yi+1dxi − yidxi+1) ,

where the third equality is due to equation (27).
It follows that dλ is indeed as stated in the lemma.

Consider the three functions on Pn:

I =
∑
i

xixi+1, J =
∑
i

(xiyi+1 + xi+1yi), K =
∑
i

yiyi+1.

The Lie algebra sl(2,R) acts on Pn diagonally. Let

e =
∑

xi
∂

∂yi
, h =

∑
xi

∂

∂xi
− yi

∂

∂yi
, f =

∑
yi

∂

∂xi

be the generators.

Lemma 3.8. The action of sl2(R) is Hamiltonian:

ieω = −dI, ihω = dJ, ifω = dK.

The field ξ is in the kernel of ω.

Proof. The first statement is a result of an obvious calculation.
For the second statement, we use the formulas from the proof of Lemma 3.5.

According to equation (25), one has

ξ =
∑

bi
∂

∂xi
+ ci

∂

∂yi

where

bi = vixi − xi−1 = uixi + xi+1, ci = viyi − yi−1 = uiyi + yi+1.

Therefore one has

iξω =
∑

(bi+1 + bi−1)dyi − (ci+1 + ci−1)dxi.

Now ∑
(bi+1 + bi−1)dyi =

∑
(vi+1xi+1 + ui−1xi−1)dyi =∑

(vi+1xi+1 − vixi−1)dyi =
∑

vi+1(xi+1dyi − xidyi+1).
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For the same reason,∑
(ci+1 + ci−1)dxi =

∑
vi+1(yi+1dxi − yidxi+1).

Hence
iξω =

∑
vi+1(xi+1dyi − xidyi+1 − yi+1dxi + yidxi+1).

But the expression in each parentheses vanishes due to equation (27). This
completes the proof.

Corollary 3.9. The functions I, J and K are integrals of the field ξ.

Proof. One has dI(ξ) = ω(ξ, e) = 0, and likewise for J and K.

Let ν = 2Ke + Jh − 2If . This vector field is tangent to the fiber of the
projection Pn → Qn.

Lemma 3.10. The functions I, J and K are integrals of the field ν.

Proof. One has

e(I) = 0, e(J) = 2I, e(K) = J ; f(I) = J, f(J) = 2K, f(K) = 0;

h(I) = 2I, h(J) = 0, h(K) = −2K,

and this implies the statement of the lemma.

Note that J2 − 4IK is a SL2(R)-invariant function that descends to Qn.
Corollary 3.9 and Lemma 3.10 imply that the fields ξ and ν are tangent to

the common level surfaces of the functions I, J,K, and since ξ also commutes
with sl2(R), one has [ξ, ν] = 0.

Remark 3.11. If n ≥ 4 is even, equations (24) still imply that vi + vi+1 = ai,
and therefore

n∑
i=1

(−1)iai = 0. (28)

Since ai = [Pi−1, Pi+1], the meaning of condition (28) is that the area of the
polygon made of the even vertices equals the area of the polygon made of the
odd ones. The space of such centroaffine polygons has dimension n − 1. If
equation (28) holds, then the linear equations (24) have not a unique solution,
as when n is odd, but a 1-dimensional space of solutions. Indeed, if Vi is a
solution, then so is Vi + (−1)itPi for all t. The respective vector field generates
the kernel of the pre-symplectic form on Qn which, for even n, is an analog of
the symplectic form on Qn that exists for odd n.
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3.5 Case study: 10-periodic carrousels

In this section, we apply the machinery described in the previous section in the
simplest nontrivial case n = 5.

Recall that we have a principle SL2(R) fiber bundle π : Pn → Qn, and Qn
is identified with the space of friezes of width n− 3.

When n = 5, the space of friezes of width two is 2-dimensional, and a general
frieze is of the form

· · · 1 1 1 1 · · ·
x y+1

x
x+1
y y x+y+1

xy

· · · y x+y+1
xy x y+1

x · · ·
1 1 1 1 1

The area form is
dx ∧ dy
xy

,

and the Hamiltonian of the field ξ̄ is

H(x, y) = x+ y +
x+ 1

y
+
y + 1

x
+
x+ y + 1

xy
.

Up to a constant, this is the function J2 − 4IK from the previous section.
The respective centroaffine decagons are constructed as follows. Start with

two vectors, P0 and P1 with [P0, P1] = 1, and construct the next three using
the discrete Hill’s equation:

P2 = xP1 − P0, P3 =
y + 1

x
P2 − P1, P4 =

x+ 1

y
P3 − P2,

and the rest by central symmetry Pi+5 = −Pi.
The affine-regular decagon corresponds to the frieze with the constant entries

that are all equal to the golden ratio:

x = y =
1 +
√

5

2
, and H =

5(1 +
√

5)

2
.

For centroaffine 2n-gons, the following inequality holds:∑
i

[Pi−1, Pi+1] ≥ 2n cos
(π
n

)
,

with the equality only for regular polygons, see [43]. In fact, the affine-regular
polygons are the only critical points of the function

∑
[Pi−1, Pi+1].

In particular, the regular decagon minimizes the function H on the moduli
space of SL2(R)-equivalence classes of centroaffine decagons, and the closed level
curves H(x, y) = c foliate the first quadrant x, y > 0. It follows that the vector
field ξ̄ is periodic on each such level curve.

Let M2 be a generic common level surface of the functions I, J,K, and let C
be the respective level curve of the function H. Recall that M carries commuting
vector fields ξ and ν, and ν is vertical with respect to the projection π : M → C.
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Lemma 3.12. The surface M is compact, and its connected components are
tori.

Proof. First we show that M is compact.
Let (αi, ri) be the polar coordinates of the vertex Pi of the decagon, i =

1, . . . , 10. It suffices to show that ri are bounded away from zero and infinity,
and that αi+1 − αi are bounded away from zero.

The centroaffine condition is

riri+1 sin(αi+1 − αi) = 1,

and

I =
∑

riri+1 cosαi cosαi+1 =
∑ cosαi cosαi+1

sin(αi+1 − αi)
,

J =
∑

riri+1(cosαi sinαi+1 + sinαi cosαi+1) =
∑ sin(αi + αi+1)

sin(αi+1 − αi)
,

K =
∑

riri+1 sinαi sinαi+1 =
∑ sinαi sinαi+1

sin(αi+1 − αi)
.

Since I, J,K are constant on M (in particular, are bounded above), it follows
that (αi+1 − αi) are bounded away from zero. Let sin(αi+1 − αi) ≥ δ > 0 for
all i, and set C = 1/δ.

Then
1 ≤ riri+1 ≤ C, i = 1, . . . , 10. (29)

Let R = C3/2. We claim that ri ≤ R for all i.
Indeed, assume that r0 > R. Then, due to equation (29),

r1 <
C

R
, r2 >

R

C
, r3 <

C2

R
, r4 >

R

C2
, r5 <

C3

R
.

But r5 = r0 > R, that is, C3 > R2, a contradiction.
It then follows from equation (29) that ri ≥ 1/R. Note that this, and the

preceding arguments, apply, with obvious modifications, to every odd n.
Finally, since M carries two commuting vector fields, its connected compo-

nents are tori.

Let T be the cyclic permutation of the vertices of polygons: T (Pi) = Pi+1,
generating the action of Z5. All the functions and vector fields involved are
T -invariant; in particular, the level curves H = c are Z5-invariant.

Let ϕt be the t-flow of ξ̄. There is a minimal value t0, depending on the level
c, such that the polygons T (ϕt(P)) and ϕt+t0(P) are centroaffine equivalent:
A(T (ϕt(P))) = ϕt+t0(P) for some A ∈ SL2(R).

In fact, A belongs to the 1-parameter subgroup whose infinitesimal gener-
ator is the vector field ν (recall, that I, J and K are constant on M) and, by
compactness of M , this monodromy is an elliptic transformation (that is, it can
be thought of as a rotation of the hyperbolic plane about some center through
some angle).
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The conjugacy class of this monodromy A depends only on c. If one finds P
such that A = Id, then its ξ-orbit will provide, after rescaling, a self-Bäcklund
centroaffine curve with period 5.

One such example is presented in Figure 11. For more examples and anima-
tions, see [13].

Figure 11: Examples of self-Bäcklund centroaffine curves constructed as de-
scribed in Section 3.5.

Remark 3.13. The material of this section is analogous to that of [14, 15],
where carrousels and Zindler carrousels were studied. A carrousel is a closed
curve in the space of equilateral polygons such that each vertex moves with unit
speed and the velocity of the midpoints of the sides are aligned with these sides.
A Zindler carrousel has the additional property that the trajectories of all the
vertices coincide.

In the situation at hand, the condition that every side is unit is replaced by
the condition that [Pi, Pi+1] = 1, and the condition of the unit speed by the
condition [Pi, P

′
i ] = 1.

4 Self-Bäcklund curves and Lamé equation

4.1 Traveling wave solutions of KdV and Wegner’s ansatz

The first two in the hierarchy of integrals of the Korteweg-de Vries equation are
the functionals ∫

p(t) dt,

∫
p2(t) dt (30)

on centroaffine curves. In particular, KdV is the Hamiltonian flow of the former
functional with respect to the symplectic form

∫
[Vf , Vg] dt, where we use formula

(1) for tangent vector fields [40].
Consider a centroaffine curve that is a relative extremum of the second func-

tional (30) subject to the constraint given by the first one. The next lemma is
well known and we do not present its proof, see [22].
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Lemma 4.1. These relative extrema are characterized by the differential equa-
tion on the centroaffine curvature

p′′′ = 6pp′ + ap′, (31)

where a is a Lagrange multiplier.

Equation (31) describes traveling wave solutions of KdV, see [22]. For the
centroaffine curves satisfying equation (31), the KdV evolution is described by
the equation ṗ = ap′, that is, by a parameter shift of the curvature p(t). Two
centroaffine curves with the same curvature function differ by an element of
SL2(R). Therefore these curves evolve in time by special linear transformations.

Equation (31) can be integrated to

(p′)2 = 2p3 + ap2 + 2bp+ c, (32)

where a, b, c are constants.

Lemma 4.2. The curves described in Section 2.2 satisfy equation (31).

Proof. Let q(t) be the centroaffine curvature of the curve fγ + cγ′ where γ is a
unit circle and f satisfies equation (4). Then

q =
2

c2
(f2 − 1)− 1,

see Lemma 3.1 in [45] for this calculation. Hence

q′ =
4ff ′

c2
=

4f

c2

(
f2

c
+ c− 1

c

)
.

One needs to check that (q′)2 = 2q3 + aq2 + 2bq + c for some constants a, b, c.
One has

(q′)2 =
16f2

c4

(
f2

c
+ c− 1

c

)2

a cubic polynomial in f2 with the leading coefficient 16/c6. The same holds for
2q3 + aq2 + 2bq + c, so one can choose the coefficients a, b, c as needed.

Now we develop a centroaffine analog of F. Wegner’s approach to 2-dimensional
bodies that float in equilibrium in all positions (or bicycle curves) [49, 50, 51].

Consider a centroaffine curve γ(t) = (r(t) cosα(t), r(t) sinα(t)). The cen-
toraffine condition [γ, γ′] = 1 is satisfied if α′ = r−2. We use prime to denote
the derivative with respect to t; the derivative with respect to α is denoted as
rα.

Emulating Wegner’s approach and using material of Section 2.1, fix a small
ε and consider the curves Γ± = γ ± εγ′. These curves are 2ε-related. We want
them to be obtained from the same curve, Γ, by rotating it through small angles
±δ. The assumption is that δ is of order ε3; all the calculations below are mod
ε4. We use the notations in Figure 12.
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Figure 12: Notation for Lemma 4.3: r = |OA|, ρ = |OB−| = |OB| =
|OB+|, ϕ = ∠AOB+, ψ = ∠OAB+, δ = ∠BOB+ = ∠B−OB. γ and Γ
are given in polar coordinates by r(α) and ρ(β) (respectively).

Lemma 4.3. One has:

ϕ = tan−1

(
ε

r2 + εrr′

)
, ρ =

√
r2 + 2εrr′ + ε2(r−2 + r′2).

Proof. One has |γ′| = r−1
√

1 + r2r′2, hence |AB+| = εr−1
√

1 + r2r′2. Next,
1 = [γ, γ′] = |γ||γ′| sinψ, hence

sinψ =
1√

1 + r2r′2
, cosψ = − rr′√

1 + r2r′2
.

Then

tanϕ =
|AB+| sinψ

|OA| − |AB+| cosψ
=

ε

r2 + εrr′
.

Finally, by the cosine rule,

|OB+|2 = |OA|2 + |AB+|2 − 2|OA||AB+| cosψ = r2 + 2εrr′ + ε2(r−2 + r′2),

as claimed.

Thus we have an equation for Γ in polar coordinates:

ρ(β) = ρ(α+ ϕ− δ) =
√
r2 + 2εrr′ + ε2(r−2 + r′2), (33)

where ϕ is given in Lemma 4.3, and where δ = cε3 with c being a constant.
To solve equation (33), consider the cubic Taylor polynomials of both sides

and equate the even and odd parts separately (since the equation holds for ±ε).
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One has

ϕ = εr−2 − ε2r−3r′ + ε3

(
r−4r′2 − 1

3
r−6

)
,

ϕ2 = ε2r−4 − 2ε3r−5r′, ϕ3 = ε3r−6,√
r2 + 2εrr′ + ε2(r−2 + r′2) = r + εr′ +

ε2

2
r−3 − ε3

2
r−4r′.

To expand the left hand side of equation (33), we calculate ρα, ραα and ρααα,
using α′ = r−2:

ρα = r2ρ′, ραα = 2r3r′ρ′ + r4ρ′′, ρααα = 6r4r′2ρ′ + 2r5r′′ρ′ + 6r5r′ρ′′ + r6ρ′′′.

Now we have for the left hand side of equation (33)

ρ(α+ ϕ− δ) = ρ+ ϕρα +
1

2
ϕ2ραα +

1

6
ϕ3ρααα − δρα =

= ρ+ ερ′ +
1

2
ε2ρ′′ +

1

6
ε3(r−2ρ′′′ + 2r−1r′′ρ′ − 2r−4ρ′)− cε3r2ρ′.

Thus

ρ+
1

2
ε2ρ′′ = r +

1

2
ε2r−3,

ρ′ +
1

6
ε2(ρ′′′ + 2r−1r′′ρ′ − 2r−4ρ′ − 6cr2ρ′) = r′ − 1

2
ε2r−4r′.

Differentiate the first equation and subtract from the second one, setting, fol-
lowing Wegner, ρ = r (since ε is infinitesimal), to obtain

r′′′ − r−1r′r′′ + 4r−4r′ + 3cr2r′ = 0.

Multiply this by r−1 and write it as(
r−1r′′ − r−4 − 3

2
cr2

)′
= 0,

or

r′′ − r−3 +
3

2
cr3 − br = 0,

where b is a constant. Multiply this by 2r′ and write it as(
r′2 + r−2 +

3

4
cr4 − br2

)′
= 0.

Hence

r′2 = −r−2 − 3

4
cr4 + br2 + a,

where a is another constant. Multiply by 4r2 to obtain

4r2r′2 = −4− 3cr6 + 4br4 + ar2.
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Finally, setting R = r2 and renaming the constants, we obtain the differential
equation

R′2 = aR3 + bR2 + cR− 4. (34)

Thus R(t) is an elliptic function. The curve is given by a parametric equation

Γ(t) = (R(t)1/2 cosα(t), R(t)1/2 sinα(t)) (35)

with R as in equation (34) and α′ = R−1.

Remark 4.4. If the curve is a centroaffine ellipse, one has a = 0 in equation
(34).

Concerning the centroaffine curvature of this curve, it is also an elliptic
function.

Lemma 4.5. One has

p(t) =
1

2
aR(t) +

1

4
b.

Proof. Differentiating equation (35) twice, we find that

p = −1

4
R−2(R′2 + 4) +

1

2
R−1R′′.

Differentiating equation (34), we obtain

R′′ =
3

2
aR2 + bR+

1

2
c.

Substitute this and equation (34) in the above formula for p to obtain the
result.

Renaming the constants again, we obtain from equation (34)

p′2 = 2p3 + ap2 + bp+ c,

which coincides with equation (32).
Let us also calculate the (Euclidean) curvature k of a curve satisfying equa-

tion (34).

Lemma 4.6. One has

k = − 4aR+ 2b

(aR2 + bR+ c)
3
2

.

Proof. Since t is the centroaffine parameter, we have for the curvature

k =
[γ′, γ′′]
|γ′|3 =

−p(t)
|γ′|3 .

We have

|γ′| =
√
r′2 + r2α′2 =

√
R′2

4R
+

1

R
=

√
R′2 + 4

4R
=

√
aR2 + bR+ c

2
.
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Hence

k =
−8p(t)

√
aR2 + bR+ c

3 = − 4aR+ 2b

(aR2 + bR+ c)
3
2

.

Thus the curvature is a function of the distance from the origin. This is a
special class of curves, studied in [17, 41]. One can think of these curves as
the trajectories of a charge in a rotationally symmetric magnetic field whose
strength is a function of the distance from the origin. Note that Wegner’s
curves also have this property: their curvature satisfies k = ar2 + b, where a, b
are constants.

Likewise one can interpret equation γ′′ = pγ as Newton’s Second Law, that
is, γ(t) is the trajectory of a point-mass in a central force field whose potential
V is rotationally symmetric. By Lemma 4.5, and renaming the constants, one
has V (r) = ar4 + br2 + c. Using conservation of energy and momentum, one
can solve the equation of motion in quadratures.

Remark 4.7. Consider a particular case when V is a pure 4th power of the
distance, that is, the force is proportional to r3. According to a corollary of the
Bohlin theorem, see Theorem 5, Appendix 1 in [5], some trajectories in this field
are the images of straight lines under the conformal transformation w = z1/3.
These are cubic curves, see Figure 13.

-2 -1 1 2

-2

-1

1

2

Figure 13: The curve 2(x3− 3xy2)− 5(3x2y− y3) + 1 = 0, the image of the line
2a− 5b+ 1 = 0 under the conformal transformation w = z1/3.

4.2 Self-Bäcklund curves as solutions of the Lamé equa-
tion

In this section we give an explicit construction of a large family of self-Bäcklund
curves, given by the Wegner ansatz of Section 4.1. We shall make frequent use
of standard facts about the Weierstrass elliptic functions ℘, ζ, σ, such as: the
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addition formulas [3, pages 40-41], quasi-periodicity properties [3, pages 35-37],
reality conditions [39, pages 29-32], degenerate cases of Weierstrass functions
[3, pages 201]. We shall also use applications of elliptic functions to the Lamé
equation which can be found in [39, pages 48-54]. We collected most of the
formulas and results that we are using in Appendix B.

4.2.1 Constructing the curves

Our starting point is equation (32),

(p′)2 = 2p3 + ap2 + 2bp+ c,

for the curvature p(t) of the self-Bäcklund curves suggested by the Wegner’s
ansatz. Comparing this equation to the equation satisfied by the Weierstrass ℘
function,

(℘′)2 = 4℘3 − g2℘− g3, (36)

we conclude that p(t) is given in terms of ℘ by

p(t) = 2℘(t+ ω′) + C. (37)

Here ℘ is the Weierstrass function with half periods ω, ω′, where the first one
is real and the second one is pure imaginary, see Figure 14. Since p(t) needs
to be periodic, we are in the case of three real roots e1 > e2 > e3 of the right
hand side of equation (36). In formula (37) the shift of the argument by ω′ is
performed in order to get a real, smooth, 2ω-periodic potential p(t).

The constant C can be written as C = ℘(a) for some a ∈ C. Thus

p(t) = 2℘(t+ ω′) + ℘(a). (38)

We write our curve in complex form X(t) = x(t) + iy(t), satisfying

X ′′ + (−℘(a)− 2℘(t+ ω′))X = 0, (39)

which is precisely the Lamé equation (equation (6) of [3, page 186]).
In order to construct a centroaffine π-anti-symmetric curve, we shall require

the following:

1. The Wronskian [X,X ′] = 1. This can be achieved by rescaling of any
solution of equation (39) satisfying [X,X ′] = const > 0 (see item 4 of
Proposition 4.8 below).

2. ω = π/2k for some integer k ≥ 2, so that p is π/k-periodic.

3. The solution X is rotated over the period 2ω by πn/k, where 0 < n < k is
odd and co-prime to k, so that after k periods we have X(t+π) = −X(t).
In other words, we require X(t) to be a complex 2ω-quasiperiodic solution
of equation (39), with Floquet multiplier µ = eiπn/k:

X(t+ 2ω) = X(t)eiπn/k.
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Figure 14: The Weierstrass function ℘(z) with real invariants and fundamental
half periods ω ∈ R, ω′ ∈ iR. (a) The fundamental rectangle in the z plane. The
boundary of the rectangle (0, ω′, ω + ω′, ω) is mapped by ℘ onto the extended
real axis R∪{∞}. (b) The phase plane of (℘′)2 = 4(℘− e1)(℘− e2)(℘− e3). (c)
The line {t+ ω′|t ∈ R} is mapped, 2ω-periodically, onto the segment [e3, e2].

A basis X+, X− for the solutions of the Lamé equation (39) can be written in
the following form (see [3, page 37]):

X±(t) = e−tζ(±a)σ(±a+ t+ ω′)σ(ω′)
σ(±a+ ω′)σ(t+ ω′)

, (40)

where ζ, σ are the Weierstrass zeta and sigma functions, respectively.
The construction of the self-Bäcklund curves is this section boils down to a

careful choice of the parameter a in equation (39).

Proposition 4.8. For every a ∈ (0, ω′) ∪ (ω, ω + ω′),

1. ℘(a) is real, hence the potential 2℘(t+ω′) +℘(a) in the Lamé equation (39)
is real as well.

2. X+(t) is a regular curve, that is, X ′+(t) 6= 0 for all t.

3. X+(0) = 1 and X ′+(0) = ib for some b ∈ R, b > 0.

4. X+(t) is locally star-shaped and positively oriented:

[X+(t), X ′+(t)] = const > 0.
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5. X+(t+ 2ω) = X+(t)e2f(a), where

f(a) := aζ(ω)− ωζ(a). (41)

That is, X+(t) is a 2ω-quasiperiodic solution of equation (39) with a Floquet
multiplier µ = e2f(a).

6. The function f of the previous item satisfies the identities

f(−a) = −f(a), f(a+ 2ω) = f(a), f(a+ 2ω′) = f(a) + iπ.

Proof. 1. See pages 31-32 of [39].

2. Differentiating equation (40), and using ζ = σ′/σ and the addition formula
for ζ, we compute:

X ′+(t) = X+(t) [ζ(a+ t+ ω′)− ζ(a)− ζ(t+ ω′)] = X+(t)
℘′(a)− ℘′(t+ ω′)
2[℘(a)− ℘(t+ ω′)]

.

Notice that the numerator in the last fraction cannot vanish, since ℘′(t + ω′)
is real and ℘′(a) is purely imaginary, both non-vanishing (℘′ vanishes in the
fundamental rectangle only at 0, ω, ω′, ω + ω′). It follows that X ′+(t) does not
vanish.

3. Substituting t = 0 into equation (40) gives X+(0) = 1. From the previous
item we have

X ′+(0) =
℘′(a)

2(℘(a)− e3)
.

For a ∈ (0, ω′) ∪ (ω, ω + ω′) the numerator ℘′(a) is purely imaginary and the
denominator is real, both non-vanishing. Hence we can write X ′+(0) = ib, b ∈
R, b 6= 0. Moreover, ℘(a) < e3 and Im[℘′(a)] < 0 for a ∈ (0, ω′). When
a ∈ (ω, ω + ω′) we have that ℘(a) > e3 is positive and Im[℘′(a)] > 0. (All this
is evident in Figure 14.) Hence, in both cases, b > 0.

4. Since X+ is a solution of Lamé equation (39), which has no X ′ term, one has

Wronskian = [X+(t), X ′+(t)] = const.

The constant must be positive, due to item 2.

5. See [39] page 52.

6. See [39] page 86.

Thus, due to requirement 3 and Proposition 4.8 (item 5), we need to solve
2f(a) ≡ iπn/k (mod 2πi), or

f(a) =
iπn

2k
+ iπm, (42)

for some integers m,n ∈ Z, where n is odd, relatively prime to k, and 0 < n < k.
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Remark 4.9. 1. To solve equation (42), it is enough to restrict a to the funda-
mental rectangle. Indeed, if a1 and a2 are two congruent solutions of equation
(42), then the corresponding potentials (38) of Lamé equation are equal, and the
curves constructed by formula (40) are equivalent under the action of SL2(R).

2. One may restrict to solutions of equation (42) where a belongs to one of the
segments (0, ω′) or (ω, ω + ω′), and m ≥ 0. This follows from the properties of
f listed in Proposition 4.8 and the monotonicity property of f on the segments
[0, 2ω′] and [ω, ω + 2ω′]. On the segment [0, 2ω′], the function f varies mono-
tonically from +i∞ to −i∞. On the segment [ω, ω + 2ω′] it varies from 0 to
iπ.

Theorem 5. Consider equation (42) for fixed integers k, n, where k ≥ 2 and n
is odd, relative prime to k, and 0 < n < k. Then

1. For each integer m ≥ 0 there is a unique solution am ∈ (0, ω′)∪(ω, ω+ω′).

2. For m > 0, am ∈ (0, ω′).

3. For m = 0, a0 ∈ (ω, ω + ω′).

4. The sequence λm(µ) := −℘(am) is strictly monotone increasing and, in
particular, the value λ0(µ) = −℘(a0) is the smallest one.

Proof. The proof of items 1–3 uses the behavior of the function f . Since πn
2k <

π
2 ,

for m = 0 there is a unique solution a0 in the segment [ω, ω + ω′], because f is
pure imaginary on [ω, ω + ω′] and varies monotonically from 0 at ω to iπ/2 at
ω + ω′.

For m > 0, one can find a unique am in the segment [0, ω′] since there f is
pure imaginary, varying monotonically from +i∞ at 0 to iπ/2 at ω′. Moreover,
the sequence am is monotone decreasing on [0, ω′].

In order to prove 4, notice that on the segment [0, ω′] the function ℘ is real-
valued and monotone increasing from −∞ to e3. Hence −℘(am) is monotone
increasing for m ≥ 1. Moreover, −℘(am) > −e3 for every m ≥ 1. As for m = 0,

−℘(a0) ∈ (−e1,−e2),

because on the interval [ω, ω + ω′] the function ℘ is monotonically decreasing
and takes the values e1, e2 at the end points, respectively. Since e3 < e2 < e1,
this proves item 4 (see Fig. 14).

Moreover we have the following result.

Theorem 6. For each k,m, n as in Theorem 5, consider the curve X+ deter-
mined by the value am.

1. X+ is locally star-shaped π-antisymmetric curve, with winding number

w = 2k
⌈m

2

⌉
+ n.
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2. X+ is embedded (simple) if and only if m = 0, n = 1.

Proof. It follows from Theorem 5 that the sequence λm(µ) := −℘(am) is the
sequence of Floquet eigenvalues for the problem

X ′′ + (λ− 2℘(t+ ω′))X = 0, X(t+ 2ω) = µX(t), µ := eiπn/k,

and that λm(µ) is monotone increasing.
It follows from Proposition 4.8 that the curve is locally star-shaped and

positively oriented.
In order to compute the winding number of the curve, we need first to see

what happens over one period [0, 2ω]. Denote by ym(t) the imaginary part of
the solution X+ corresponding to am. We know by Proposition 4.8 (claim 2)
that at the end points of the period one has

ym(0) = 0, y′m(0) > 0, ym(2ω) = sin
(πn
k

)
> 0.

This implies that the number of zeroes of ym on (0, 2ω] is even for every m.
In order to find the number of zeroes of ym on the interval (0, 2ω) we use

Sturm theory, comparing ym with the Dirichlet eigenfunctions of the Lamé
equation, as follows.

Let us denote by Λm, Ψm,m ≥ 0, the eigenvalues and eigenfunctions corre-
sponding to Dirichlet boundary conditions of the equation

Ψ′′ + (λ− 2℘(t+ ω′))Ψ = 0. (43)

Thus the eigenfunctions Ψm vanish at the end points of the interval [0, 2ω] and
have exactly m zeros in (0, 2ω).

We claim that the number of zeroes of ym in (0, 2ω) is given by the formula:

#{t ∈ (0, 2ω) : ym(t) = 0} = 2
⌈m

2

⌉
. (44)

To prove this, we shall consider two cases (see Figure 15):

1. If m = 2l then Λ2l−1 < λ2l(µ) < Λ2l. In this case, the zeroes of Ψ2l−1 divide
the interval into 2l subsegments. In each of them, y2l must vanish somewhere
(by Sturm theory). Hence there are at least 2l zeroes. In fact, this number must
be exactly 2l, because otherwise it would be at least 2l + 2 zeros (ym has an
even number of zeroes). But then Ψ2l would have more than 2l zeroes.

2. If m = 2l + 1 then Λ2l < λ2l+1(µ) < Λ2l+1. The zeroes of Ψ2l divide the
interval into 2l + 1 subintervals, in each of which y2l+1 must vanish somewhere
(by Sturm theory), implying that y2l+1 has at least 2l+ 1 zeroes. But then this
number is at least 2l + 2, because it is even. Hence, the number of zeroes of
y2l+1 is exactly 2l + 2, because otherwise Ψ2l+1 would have more than 2l + 1
zeroes. This completes the proof of the claim.
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Figure 15: Graph of the function ∆(λ) := y1(λ, 2ω) + y′2(λ, 2ω), where
y1(λ, t), y2(λ, t) are the basic solutions of equation (43) with y1(λ, 0) =
y′2(λ, 0) = 1, y′1(λ, 0) = y2(λ, 0) = 0; the positions of the periodic (λn), anti-
periodic (µn), Dirichlet (Λn), and Floquet (λn(µ)) eigenvalues are indicated.

As a consequence of formula (44), we see that for a = am the solution X+

makes dm2 e full turns over the period [0, 2ω], plus an angle of πn
k , which is a n

2k
fraction of a full turn. Altogether, after 2k periods, the number of turns is

w = 2k
(⌈m

2

⌉
+

n

2k

)
= 2k

⌈m
2

⌉
+ n.

This proves the first claim of Theorem 6.
The last formula implies that the curve is simple, that is, w = 1, if and only

if m = 0, n = 1, proving the second claim. This completes the proof.

4.2.2 Establishing the self-Bäcklund property

Proposition 4.10. The curve X+ of equation (40) satisfies the self-Bäcklund
property [X+(t), X+(t + α)] = const for a value of the parameter α ∈ (0, π) if
and only if

σ(a+ α) = e2αζ(a)σ(a− α). (45)

Proof. Set β = α/2. Then equation (2) can be rewritten as

Im
(
X+(t+ β)X+(t− β)

)
= c,

where overline denotes the complex conjugation. We can rewrite this equation
as

X+(t+ β)X−(t− β)−X−(t+ β)X+(t− β) = 2c.
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Next we substitute in the last equation the expressions for X± from equation
(40):

2c =e−(t+β)ζ(a)σ(a+ t+ β + ω′)σ(ω′)
σ(a+ ω′)σ(t+ β + ω′)

e(t−β)ζ(a)σ(−a+ t− β + ω′)σ(ω′)
σ(−a+ ω′)σ(t− β + ω′)

−

− e(t+β)ζ(a)σ(−a+ t+ β + ω′)σ(ω′)
σ(−a+ ω′)σ(t+ β + ω′)

e−(t−β)ζ(a)σ(a+ t− β + ω′)σ(ω′)
σ(a+ ω′)σ(t− β + ω′)

.

This can be simplified, using the identity

℘(z)− ℘(w) = −σ(z − w)σ(z + w)

σ2(z)σ2(w)
(46)

(see [39, page 25]). We get

2c =e−2βζ(a) [℘(t+ ω′)− ℘(a+ β)]σ2(a+ β)σ2(ω′)
[℘(t+ ω′)− ℘(β)]σ2(β)σ(a+ ω′)σ(−a+ ω′)

−

− e2βζ(a) (℘(t+ ω′)− ℘(a− β))σ2(a− β)σ2(ω′)
[℘(t+ ω′)− ℘(β)]σ2(β)σ(a+ ω′)σ(−a+ ω′)

.

Multiplying by the common denominator and renaming the constant,

c̃ := 2cσ2(β)σ(a+ ω′)σ(−a+ ω′)/σ2(ω′),

we get

c̃ [℘(t+ ω′)− ℘(β)] =e−2βζ(a) [℘(t+ ω′)− ℘(a+ β)]σ2(a+ β)−
− e2βζ(a) [℘(t+ ω′)− ℘(a− β)]σ2(a− β).

Thus we must have

c̃ = e−2βζ(a)σ2(a+ β)− e2βζ(a)σ2(a− β)

℘(β)c̃ = e−2βζ(a)℘(a+ β)σ2(a+ β)− e2βζ(a)℘(a− β)σ2(a− β).

Substituting c̃ from the first identity into the second and simplifying, we get

σ2(a+ β) [℘(a+ β)− ℘(β)] = e4βζ(a)σ2(a− β) [℘(a− β)− ℘(β)] .

Now, using equation (46) again, we obtain σ(a + α) = e2αζ(a)σ(a − α), as
needed.

The next theorem states the self-Bäcklund property of the curves X+.

Theorem 7. For each k,m, n as in Theorem 5, the associated curve X+ satisfies
the self-Bäcklund property [X+(t), X+(t + α)] = const for k − 2 values of α ∈
(0, π).
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Example 4.11. Let us look for solutions of equation (45) of the form α = lω,
where l is an integer. Using the quasi-periodicity property of σ (see [3, page
37], [39, page 20]), we write

σ(a+ α) = σ(a+ lω) = σ(a− α+ 2lω) = (−1)le2lζ(ω)(a−α+lω)σ(a− α) =

= (−1)le2laζ(ω)σ(a− α).

Comparing with equation (45), we require (−1)le2laζ(ω) = e2αζ(a). We choose l
to be odd and require

2αζ(a) = 2lωζ(a) = 2laζ(ω)− iπ.
Hence f(a) = aζ(ω) − ωζ(a) = iπ/2l. But, according to equation (42), f(a) =
iπn/2k + iπm. Therefore, choosing m = 0, n = 1, implies l = k, and so α =
lω = kπ/2k = π/2. In this way, we construct an infinite family of self-Bäcklund
simple closed curves with rotation number α = π/2, as discussed in Section 3.3,
but now we have an analytical example. See Figure 16.

Figure 16: Example 4.11. Self-Bäcklund centroaffine simple curves X+(t) of
Wegner type (blue) with 2k-fold symmetry, k = 3, 5, 7, with rotation number
α = π/2 (one quarter of a turn). The red curve is traced by the midpoint of the
line segment X+(t)X+(t + π/2) (black) and is tangent to it. For large enough
ω′, the midpoint curve is smooth and convex (top); as ω′ becomes smaller, cusps
appear (bottom).

4.2.3 Proof of the self-Bäcklund property (Theorem 7)

We shall distinguish between two cases. In both cases we shall rewrite equation
(45) in a more tractable form.
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Case 1. Let us start with the most important case m = 0 (the curve is simple
if and only if n = 1). For m = 0 we have from equation (42) that f(a) = iπn

2k ,
where

a = ω + ib ∈ [ω, ω + ω′], b ∈ R.

We have from equation (45) that

− σ(α+ ω + ib)

σ(α− ω − ib) = e2αζ(ω+ib). (47)

Using the quasi-periodicity of σ, one has

−σ(α+ ω + ib) = σ(α− ω + ib)e2ζ(ω)(α+ib).

Substituting into equation (47), we get

σ(α− ω + ib)

σ(α− ω − ib) = e2αζ(ω+ib)−2ζ(ω)(α+ib) = e2α[ζ(ω+ib)−ζ(ω)]−2iζ(ω)b,

or, equivalently,

− σ(α− ω + ib)

σ(−α+ ω + ib)
= e2α[ζ(ω+ib)−ζ(ω)]−2iζ(ω)b.

Taking log, we obtain

i2πl +

∫ α−ω

−α+ω

ζ(ib+ t)dt = iπ + 2α[ζ(ω + ib)− ζ(ω)]− 2iζ(ω)b.

Hence

πl + Im

(∫ α−ω

0

ζ(ib+ t)dt

)
=
π

2
+
α

i
[ζ(ω + ib)− ζ(ω)]− ζ(ω)b. (48)

Let us denote

g(α) := Im

(∫ α−ω

0

ζ(ib+ t)dt

)
.

Lemma 4.12. For any r ∈ N ∪ {0}, we have

Im

(∫ 2ωr−ω

0

ζ(ib+ t)dt

)
= (2r − 1)bζ(ω)− πr +

π

2
.

Proof. Apply the Cauchy residue formula to the rectangular path

−ω(2r−1)+ib→ ω(2r−1)+ib→ ω(2r−1)−ib→ −ω(2r−1)−ib→ −ω(2r−1)+ib

to obtain the result.
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Using the quasi-periodicity of ζ and Lemma 4.12, we have

g(α+ 2ω) = Im

(∫ 2ωr+ω

0

ζ(ib+ t)dt

)
= Im

(∫ 2ωr−ω

0

ζ(ib+ t)dt

)
+ Im

(∫ ω

−ω
ζ(ib+ t)dt

)
= Im

(∫ 2ωr−ω

0

ζ(ib+ t)dt

)
+ 2Im

(∫ ω

0

ζ(ib+ t)dt

)
= Im

(∫ 2ωr−ω

0

ζ(ib+ t)dt

)
+ 2bζ(ω)− π = g(α) + 2bζ(ω)− π.

Therefore we can write g in the form

g(α) =

(
2bζ(ω)− π

2ω

)
α+ h(α), (49)

where h is a 2ω-periodic function. Moreover, by Lemma 4.12 (with r = 0),

h(0) = g(0) = −bζ(ω) +
π

2
.

It is convenient to use h0 instead of h:

h0(α) := h(α)− h(0) = h(α) + bζ(ω)− π

2
,

so that h0 is 2ω-periodic with h0(0) = 0. Thus

g(α) =

(
2bζ(ω)− π

2ω

)
α+ h0(α)− bζ(ω) +

π

2
. (50)

Substituting equation (50) into equation (48), we obtain the equation:

πl +

(
2bζ(ω)− π

2ω

)
α+ h0(α)− bζ(ω) +

π

2

=
π

2
+
α

i
[ζ(ω + ib)− ζ(ω)]− ζ(ω)b.

This is the same as

πl + h0(α) = α

(−2bζ(ω) + π

2ω
+

(ζ(ω + ib)− ζ(ω))

i

)
= α

(
π

2ω
+

2ωζ(ω + ib)− 2ωζ(ω)− 2ibζ(ω)

2iω

)
= α

(
π

2ω
− 2f(ω + ib)

2iω

)
= α

(
π

2ω
− 2f(a)

2iω

)
.

(51)

Taking into account that f(a) = iπn
2k and 2ωk = π, we come to the final form

of the equation:
πl + h0(α) = α(k − n). (52)
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We claim that equation (52) has at least k − n − 1 solutions for α in the
open interval (0, π).

Indeed, since h0(0) = h0(π) = 0, the end points α = 0, α = π of the open
interval are solutions of equation (52) for l = 0 and l = k − n, respectively.
(These two solutions are geometrically trivial, corresponding to α = 2β = 0 and
α = 2β = π for the initial geometric problem.) Therefore, for all intermediate
levels of l, that is, for l ∈ [1, k − n− 1], there exists a solution of equation (52).
This proves the claim.

We shall prove now that the number of solutions of equation (52) in the
interval (0, π) is exactly equal to (k − n − 1). For equation (48), it suffices to
show that the function

Im

(∫ α−ω

0

ζ(ib+ t)dt

)
− α

i
[ζ(ω + ib)− ζ(ω)]

has non-vanishing derivative with respect to α. Arguing by contradiction, sup-
pose that

Im (ζ(ib+ α− ω)− [ζ(ω + ib)− ζ(ω)]) = 0.

Notice that ζ(ω) is real, and ζ(ω + α + ib) and ζ(−ω + α + ib) have the same
imaginary part. Hence

Im (ζ(ib+ α+ ω)− ζ(ω + ib)) = 0. (53)

Using the addition formula, we have

ζ(ib+ ω + α) = ζ(ib+ ω) + ζ(α) +
℘′(ib+ ω)− ℘′(α)

2(℘(ib+ ω)− ℘(α))
.

It then follows from equation (53) that

ζ(α) +
℘′(ib+ ω)− ℘′(α)

2(℘(ib+ ω)− ℘(α))
∈ R.

Moreover, the values ζ(α), ℘(ib + ω), ℘(α), ℘′(α) are all real. We conclude
that ℘′(ib+ ω) ∈ R.

On the other hand,

ib+ ω ∈ (ω, ω′)⇒ e2 < ℘(ib+ ω) < e1.

Thus the equation (℘′)2 = 4(℘−e1)(℘−e2)(℘−e3) implies that ℘′(ib+ω) ∈ iR,
a contradiction. This completes the proof of Theorem 7 in Case 1.

Case 2. In this case m > 0, a = ib ∈ [0, ω′], b ∈ R . Using σ′

σ = ζ, we write

σ(z) = σ(z0) exp

(∫ z

z0

ζ(t)dt

)
.

Taking log, we rewrite equation (45) in the form∫ α

−α
ζ(ib+ t)dt+ 2πil = 2αζ(ib), l ∈ Z.
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Using that ζ is odd, rewrite this as

2πil +

∫ α

0

[ζ(ib+ t)− ζ(−ib+ t)]dt = 2αζ(ib).

Notice that both sides of this equation are purely imaginary, and hence

πl + Im

(∫ α

0

ζ(ib+ t)dt

)
=

1

i
αζ(ib). (54)

On the right hand side we have a linear function of α. Let us denote the integral
on the left hand side of equation (54) by

g(α) := Im

(∫ α

0

ζ(ib+ t)dt

)
.

Lemma 4.13. For any r ∈ N, we have

Im

(∫ 2ωr

0

[ζ(ib+ t)dt

)
= −πr + 2rζ(ω)b.

Proof. This follows from the residue formula for the rectangular path

ib→ 2ωr + ib→ 2ωr − ib→ −ib→ ib,

avoiding the singular points of ζ at 0 and 2ωr by small half circles.

In particular, using this lemma for r = 1 and the quasi-periodicity of ζ, we
compute

g(α+ 2ω) = g(α) +
1

i

∫ 2ω

0

ζ(ib+ t)dt = g(α)− π + 2ζ(ω)b.

Using this, one can expresses g as the sum of a linear and a 2ω-periodic function
as follows:

g(α) =

(−π + 2ζ(ω)b

2ω

)
α+ h(α), g(0) = h(0) = 0,

where h is 2ω-periodic. Therefore, equation (54) takes the form

πl + h(α) = −
(−π + 2ζ(ω)b

2ω

)
α+

1

i
αζ(ib),

hence

πl + h(α) = α

(
1

i
ζ(ib)− −π + 2ζ(ω)b

2ω

)
.

Thus we arrive at the following equation

πl + h(α) = α

(
π

2ω
+

2ωζ(ib)− 2ζ(ω)ib

2ωi

)
= α

(
π

2ω
− 2f(ib)

2ωi

)
.
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Next, taking into account that f(ib) = f(a) = iπn
2k and 2ωk = π, we obtain

the simplest possible form:

πl + h(α) = α(k − n). (55)

Also in this case we claim that equation (55) has at least k−n− 1 solutions for
α in the open interval (0, π).

Indeed, since h(0) = h(π) = 0, the end points α = 0, α = π of the open
interval are solutions of equation (55) for l = 0 and l = k − n, respectively.
Therefore, for all intermediate levels of l, that is, for l ∈ [1, k − n − 1], there
exists a solution of equation (55). This proves the claim.

We shall prove now that the number of solutions of equations (55) in the
interval (0, π) equals exactly k− n− 1. Consider equation (54). We shall check
that the function

Im

(∫ α

0

ζ(ib+ t)dt− αζ(ib)

)
has everywhere non-vanishing derivative with respect to α when ib ∈ (0, ω′).

Suppose, on the contrary, that the derivative vanishes for some α:

Im (ζ(ib+ α)− ζ(ib)) = 0. (56)

Using the addition formula for ζ, we have

ζ(ib+ α) = ζ(ib) + ζ(α) +
℘′(ib)− ℘′(α)

2(℘(ib)− ℘(α))
.

Taking the imaginary part and using equation (56), we obtain

ζ(α) +
℘′(ib)− ℘′(α)

2(℘(ib)− ℘(α))
∈ R.

Also we know that ζ(α), ℘(ib), ℘(α), ℘′(α) are all real. Therefore we conclude
that ℘′(ib) ∈ R. But, on the other hand, ℘ satisfies the equation (℘′)2 = 4(℘−
e1)(℘− e2)(℘− e3). Moreover,

ib ∈ (0, ω′)⇒ ℘(ib) < e3 ⇒ ℘′(ib) ∈ iR.

This contradiction completes the proof in Case 2.

The preceding theorem has the next corollary.

Corollary 4.14. All the solutions of equation (45) are transversal and hence
change smoothly as one varies the parameter ω′ of the elliptic functions involved.

4.3 Self-Bäcklund curves as deformations of conics

In this section we construct a genuine deformation of a Bäcklund curve to a
central conic. This material is related to that in Section 3.1.
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We restrict consideration here to simple curves only. Thus we shall assume
everywhere in this section that n = 1,m = 0, in accordance with Theorem 6.
Hence, while constructing the curve X+, we solve equation (42) for m = 0 and
get the unique solution a ∈ (ω, ω + ω′) (we simplify the notations and drop the
index 0)

As before, we shall fix a positive integer k and set 2ω = π
k . We shall consider

the deformation of the Weierstrass functions as ω′ →∞:

℘s(·) = ℘(·|ω;ω′s), ω′s =
ω′

s
, s ∈ [1, 0].

The functions ζs, σs are determined accordingly. Such a deformation can be
realized by collapsing two roots e3, e2 → −c, e1 → 2c.

Remark 4.15. It is convenient to think about this deformation in terms of the
elliptic invariants (g2(s), g3(s)), which can be extended smoothly to the closed
interval [0, 1]. This can be deduced from the series expressing the ℘-function
via the invariants g2, g3.

With these remarks it is clear that ℘s, ζs, σs, s ∈ [0, 1] become smooth
(analytic) families. It turns out that ([3], page 201)

c =
1

3

( π
2ω

)2

, ℘0(z) = −c+ 3c
1

sin2(
√

3cz)
,

ζ0(z) = cz +
√

3c cot(
√

3cz), σ0(z) =
1√
3c
ecz

2/2 sin(
√

3cz).

(57)

In what follows we start with the objects considered at s = 0 and then
extend them to positive s using smoothness of the families and a transversality
argument. Next we extend the objects smoothly to the whole interval [0, 1].

For example, consider equation (42) on a for s = 0. Write a in the form
a = ω + iω′b. We have:

f0(a) = aζ0(ω)− ωζ0(a) =
iπ

2k
= iω. (58)

Using the explicit formula (57) for ζ0, we compute that equation (58) is equiv-
alent to

a = ω + iω′b, tanh

(
πb

2

)
=

2ω

π
=

1

k
. (59)

Notice that there is a unique solution of this equation and, moreover, it is non-
degenerate. Therefore there exists a unique solution as of the equation

fs(a) = asζs(ω)− ωζs(as) =
iπ

2k
= iω (60)

for s ≥ 0, smoothly depending on s. (By the implicit function theorem we get
this fact for small positive s, and then for the whole segment s ∈ [0, 1], since we
know a priori the existence, uniqueness, and smooth dependence of as on s for
positive s.)
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Also we have that the solution of equation (58) satisfies

ζ0(a) = −i+
1

3

( π
2ω

)2

a.

Now we are in position to state the existence of the deformations of the circle.
The idea is to write the functions Xs, s ∈ [0, 1], as Floquet eigenfunctions of a
Hill operator on [0, 2ω] and to use a general argument of smooth dependence of
the eigenfunction on s.

Following this idea, we consider the family of 2ω-periodic functions for s ∈
[0, 1], 2ω = π

k : {
qs(t) = ℘s(t+ ω′s), ω

′
s = ω′

s , s 6= 0,

q0(t) = −c = − 1
3

(
π
2ω

)2
, s = 0.

Theorem 8. 1. The functions qs smoothly depend on s ∈ [0, 1].

2. The functions

Xs(t) =


e−tζs(as) σs(as+t+ω

′
s)σs(ω

′
s)

σs(as+ω′
s)σs(t+ω

′
s)

for s 6= 0,

eit for s = 0

are eigenfunctions corresponding to the smallest eigenvalue λ
(s)
0 for the

Floquet problem

X ′′ + (λ− 2qs(t))X = 0, X(t+ 2ω) = µX(t), µ = ei
π
k , 2ω = π/k. (61)

3. The family of functions Xs, s ∈ [0, 1], depend smoothly on s. The functions
Xs determine a deformation of the unit circle through centrally symmetric
star-shaped curves. See Figure 17.

Proof. 1. We use the series defining the ℘s function:

qs(t) = ℘s(t+ ω′s) =

=
1(

t+ iω
′

s

)2 +
∑

(m,n)6=0

(
1(

t+ 2nω + iω
′

s + 2imω′

s

)2 − 1(
2nω + 2imω′

s

)2
)

=
s2

(st+ iω′)2 +
∑

(m,n)6=0

(
s2

(st+ s2nω + iω′ + 2imω′)2 −
s2

(s2nω + 2imω′)2

)
.

From this series one sees that, for s = 0,

q0(t) =
∑
n 6=0

−
(

1

2nω

)2

= − 1

(2ω)2

π

3
= −c.

Also it is clear that the series can be differentiated.
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Figure 17: Theorem 8. Three families of deformations of the circle (black)
through a 1-parameter family of self-Bäcklund curves Xs (blue) with 2k-fold
symmetry, k = 3, 4, 5, realizing the respective infinitesimal deformations of The-
orem 3.

2. For s > 0, the functions Xs were constructed exactly as eigenfunctions of the
Floquet problem for the smallest eigenvalue. Let us consider the case s = 0. In
this case,

X ′′0 + (λ+ 2c)X0 = 0.

Hence
X0(t) = ei

√
2c+λt.

Since the Floquet multiplier is ei2ω, we obtain

2c+ λ =
(

1 +
πm

ω

)2

= (1 + 2km)2 ≥ 1.

Hence the smallest λ is 1− 2c, and we get X0 = eit, as needed.

3. Notice that, for a given periodic potential q(t), the problem (61) of Floquet
eigenvalues has the following properties (see [23], page 32):

1. The eigenvalues λm(µ) are solutions of the equation

∆(λ) = 2 cos
(π
k

)
. (62)

(Recall that ∆(λ) is the trace of the period map of equation (61).)

2. The graph of the function ∆(λ) (see Figure 15) is such that all the solutions
of equation (62) are transversal. Hence all λm,s(µ), and, in particular,
λ0,s(µ), depend smoothly on the parameter s.

3. All Floquet eigenvalues λm,s(µ) have multiplicity 1, because if X is an
eigenfunction for some non-real Floquet exponent, then X is not.
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One concludes from these properties that the eigenfunctions depend smoothly
on the parameter s. Indeed, let us fix a basis of solutions of the second order
differential equation

X ′′ + (λ− 2qs(t))X = 0

y1(λ, s, t), y2(λ, s, t) : y1(λ, s, 0) = y′2(λ, s, 0) = 1, y′1(λ, s, 0) = y2(λ, s, 0) = 0.

Hence we can write the eigenfunction corresponding to λm,s(µ) in the form

X = Ay1 +By2,

and then the Floquet boundary conditions can be written, in terms of A,B, in
the form

M(λ, s) ·
(
A
B

)
= 0 (63)

for a 2 by 2 matrix M(s, λ), smoothly depending on λ, s.
Moreover, it follows from 2) that, for λ = λm,s, the matrix M has rank 1 and

that M(λm,s, s) smoothly depends on s. But then the solution

(
A
B

)
of equation

(63) can be also chosen smoothly depending on s. Therefore the eigenfunction
corresponding to λm,s smoothly depends on s as well.

The next step is to evaluate αs. This is covered by the following theorem.

Theorem 9. For every s ∈ [0, 1], the curves determined by Xs are self-Bäcklund
for k − 2 values of αs ∈ (0, π). These αs satisfy the equation

σs(as + αs)

σs(as − αs)
= e2αsζs(as). (64)

For s = 0, this equation reduces to equation (18),

k tan(α) = tan(kα).

Moreover, all k − 2 solutions αs (see Theorem 3, part 2) depend smoothly on
s ∈ [0, 1].

Proof. Consider equation (64) on α for s = 0 :

σ0(a+ α)

σ0(a− α)
= e2αζ0(a),

where a is the solution of equation (58). Set

F (α) :=
σ0(a+ α)

σ0(a− α)
e−2αζ0(a).

Using the explicit formulas (57)-(59) and π = 2kω, we have:

F (α) =
sin
(
π
2ω (a+ α)

)
sin
(
π
2ω (a− α)

)ei2α =
1− i 1

k tan(kα)

1 + i 1
k tan(kα)

ei2α.
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This immediately implies that the equation F = 1 is equivalent to the familiar
equation (18):

k tan(α) = tan(kα).

This means that, for s = 0, equation (64) has precisely k − 2 solutions for
α ∈ (0, π).

Moreover, differentiating F at a point α where F (α) = 1 we have:

F ′(α) = 2iF + e2iα

−2i
cos2(kα)

(1 + i
k tan kα)2

= 2i−
2i

cos2(kα)

1− ( ik tan kα)2
= 2i

(1− k2) tan2 kα

k2 + tan2 kα
6= 0.

Applying the implicit function theorem, we conclude that all k − 2 solutions of
equation (64) can be smoothly extended from s = 0 to s > 0. This, together
with Theorem 7 and Corollary 4.14, implies the existence of k − 2 solutions for
every s ∈ [0, 1], smoothly depending on s.

5 Self-Bäcklund polygons

5.1 Centroaffine butterflies, Bianchi permutability

The central projection R2 \ {0} → RP1 takes a centroaffine curve to a curve
in the projective line. Conversely, a projective curve admits a unique lift to
a centroaffine curve. Bianchi permutability for c-relation was established for
projective curves, in [45]. Here we do it for centroaffine curves.

Let us say that a quadrilateral P1P2P3P4 forms a centroaffine butterfly if

[P1, P2] = [P4, P3] and [P2, P3] = [P1, P4]. (65)

Note that a centroaffine butterfly is not necessarily a centroaffine polygon.

Lemma 5.1. A generic quadrilateral P1P2P3P4 is a centroaffine butterfly if and
only if any of the following equivalent conditions are satisfied:

1. There is a linear involution I ∈ GL2(R) interchanging P1P2 and P3P4. That
is, I(P1) = P3, I(P2) = P4, I(P3) = P1, I(P4) = P2.

2. The line segments P1P3, P2P4 are parallel and their midpoints are collinear.
See Figure 18.

3. PaPbPcPd is a centroaffine butterfly, where abcd is any of the 8 permutations
of 1234 generated by (1234), (24), (12)(34).

Proof. 1. By applying a linear transformation, we can assume the P1 = (1, 0), P3 =
(0, 1). Let P3 = (c, d). Then equations 65 imply P4 = (d, c). Thus I : (x, y) 7→
(y, x) is the required symmetry.
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Figure 18: A centroaffine butterfly

2. Note that the said segments are parallel and their midpoints are collinear if
and only if [P1 ± P3, P2 ± P4] = 0 (‘−’ for the 1st statement, ‘+’ for the 2nd).
By expanding these expressions we see that they are equivalent to [P1, P2] =
[P4, P3], [P2, P3] = [P1, P4].

3. This is a simple verification (omitted).

It follows from this lemma that, given a generic triple of points P1, P2, P3,
there is a unique fourth point P4 such that P1P2P3P4 form a centroaffine butter-
fly. Namely, by property 1, P4 = IP2 where I is defined by IP1 = P3, IP3 = P1.
More geometrically, by property 2, one constructs the line ` through P2 and
parallel to P1P3, intersect ` with the line through the origin O and the mid-
point of P1P3, then finds the unique point P4 on ` such that this intersection
point is the midpoint of P2P4.

Theorem 10 (Bianchi permutability). Consider three centroaffine curves γ, δ,
and Γ such that Γ and δ are b- and c-related to γ (respectively). Then there
exists a fourth centroaffine curve ∆ that is b-related to δ and c-related to Γ.
In fact, ∆(t) is the unique point such that δ(t)γ(t)Γ(t)∆(t) form a centroaffine
butterfly.

Proof. We have
[γ, δ] = [Γ,∆] = c, [γ,Γ] = [δ,∆] = b,

and need to check that ∆(t) is a centroaffine curve, that is, [∆,∆′] = 1.
Using the above relations, one can write ∆ as a linear combination of δ and

Γ,

∆ =
[γ, δ]

[Γ, δ]
δ − [γ,Γ]

[Γ, δ]
Γ =

cδ − bΓ
[Γ, δ]

.

Then

[∆,∆′] =
[cδ − bΓ, cδ′ − bΓ′]

[Γ, δ]2
=
b2 + c2 − bc([δ,Γ′] + [Γ, δ′])

[Γ, δ]2
.

Thus we want to show that

b2 + c2 − bc([δ,Γ′] + [Γ, δ′]) = [Γ, δ]2. (66)
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We have
δ = fγ + cγ′, Γ = gγ + bγ′,

hence
δ′ = (f ′ + cp)γ + fγ′, Γ′ = (g′ + bp)γ + gγ′.

It follows that

[Γ, δ] = cg − bf, [δ,Γ′] = fg − cg′ − bcp, [Γ, δ′] = fg − bf ′ − bcp.

In addition, one has equations (3):

cf ′ = f2 − c2p− 1, bg′ = g2 − b2p− 1.

Substitute these formulas into equation (66) to obtain a true identity.

5.2 Discrete Bäcklund transformation

In this section, we describe the centoraffine version of the transformation thor-
oughly studied in [7]. That paper concerned polygons in RP1, which is close to,
but not exactly the same as, centroaffine polygons in the plane (the difference
occurs for projective even-gons, see Section 8.4 of [36] for details).

Let P and Q be two origin-symmetric 2n-gons in R2 with vertices Pi and
Qi, i = 1, . . . , 2n, such that [Pi, Pi+1] = [Qi, Qi+1] = 1 for all i. The polygons
are Bäcklund transformations of each other if there exist a constant c such that
[Pi, Qi] = c for all i.

The above described relation between centoraffine polygons is an analog of
the discrete bicycle transformation studied in [46]. In particular, it admits the
following geometric construction.

Let P = (P1, P2, . . .) be given, and let the first vertex, Q1, be given as
well. Then one can construct the next vertex Q2 by requiring [Q1, Q2] = 1 and
[P1, Q1] = [P2, Q2]. That is, P1P2Q2Q1 is a centroaffine butterfly.

Continuing in this way, one constructs the points Q3, Q4, . . . , Q2n, Q2n+1. In
general, Q2n+1 6= Q1, and one has a non-trivial monodromy associated with P.
However if Q2n+1 = Q1, one obtains a centroaffine polygon Q that is Bäcklund
transformation of P.

One may extend this construction to more general types of polygons: given
P, construct Q such that [Pi, Pi+1] = [Qi, Qi+1] for all i, and [Pi, Qi] having the
same value for all i. This is in fact the case in the next result, since, as we noted
before, centroaffine butterflies, by definition, are not centroaffine polygons. The
next result has an analog for the discrete bicycle transformation, see [46].

Lemma 5.2. Centroaffine butterflies have trivial monodromy: if P is a butterfly
then any of its Bäcklund transforms is a closed quadrilateral Q that is also a
centroaffine butterfly. See Figure 19.
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Figure 19: Two centroaffine butterflies are Bäcklund transformations of each
other.

Proof. Since PiPi+1Qi+1Qi is a centroaffine butterfly we have, by Lemma 5.1,
that Qi+1 = IQiPi+1

(Pi), i ≥ 1, where IAB is the linear map interchanging A
and B. Explicitly,

IAB(X) =
[A,X]B + [X,B]A

[A,B]
. (67)

Applying a linear transformation, we may assume that

P1 = (1, 0), P2 = (a, b), P3 = (0, 1), P4 = (b, a), Q1 = (x, y),

where a, b are parameters that characterize the butterfly P. Applying equation
(67) repeatedly to Qi+1 = IQiPi+1

(Pi), we find

Q2 =
1

bx− ay (ab− xy, b2 − y2), Q3 =

(
−y, −y

(
a2 + b2

)
+ abx+ y3

ab− xy

)
,

Q4 =
1

ax− by (ab− xy, a2 − y2), Q5 = (x, y).

This completes the proof.

We can define centoraffine polygon recutting in analogy with polygon recut-
ting introduced by V. Adler [1, 2]. Let P be a centroaffine n-gon. For every i
mod n, define the transformation Ti: all vertices stay put, except Pi, which is
replaced by P ′i so that Pi−1PiPi+1P

′
i be a centoraffine butterfly, see Figure 20

(left).
Note that if [Pi−1, Pi] = [Pi, Pi+1], then P ′i = Pi, and the recutting is a

trivial operation.
The centoraffine polygon recutting transformation of P is the composition

TnTn−1 . . . T1. It appears that this transformation is completely integrable, and
that it commutes with and shares the integrals of the centroaffine Bäcklund
transformation, similarly to what holds for Adler’s polygon recutting, see [46].
See Figure 20 (right). We do not dwell on this matter here.
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21

Figure 20: Centoraffine polygon recutting. Left: the definition. Right: an
examples of hexagon evolution under recutting. The vertices of several thousand
iteration are drawn, showing evidence of complete integrability.

5.3 Rigidity results and flexible examples

Recall that an origin-symmetric 2n-gon P in R2 with vertices Pi, i = 1, . . . , 2n,
is called a self-Bäcklund (n, k)-gon if

[Pi, Pi+1] = 1, [Pi, Pi+k] = c

for all i and 2 ≤ k ≤ n − 2. Such polygons are acted upon by SL2(R). Since
Pi+n = −Pi, we can assume, without loss of generality, that k ≤ n/2.

A regular 2n-gon is a self-Bäcklund (n, k)-gon for all 2 ≤ k ≤ n/2. We call
these self-Bäcklund (n, k)-gons and their SL2(R) images trivial. The problem is
to find non-trivial self-Bäcklund (n, k)-gons.

The next result is analogous to Theorem 9 of [42].

Theorem 11. In the following cases every self-Bäcklund (n, k)-gon is trivial:

1. n is arbitrary, k = 2;

2. n is odd, k = 3;

3. k is arbitrary, n = 2k + 1.

4. n = 3k.

On the other hand, there exist non-trivial self-Bäcklund (n, k)-gons in the fol-
lowing cases:

1. n is even and k is odd;

2. n = 2k.
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Proof. Each next vertex is a linear combination of the preceding two: Pi+2 =
aiPi+1 − Pi.

Let k = 2. Then [Pi, Pi+2] = c, hence ai = c for all i. Let A be the linear
map defined by

A(P1) = P2, A(P2) = P3.

We claim that A is area preserving and A(Pi) = Pi+1 for all i. This would imply
that the polygon P is centroaffine regular, that is, trivial.

That A is area preserving follows from [P1, P2] = [P2, P3]. Next,

P3 = −P1 + cP2, hence A(P3) = −P2 + cP3 = P4.

Repeating this argument, we obtain A(Pi) = Pi+1 for all i.

Now let n be odd and k = 3. Consider four consecutive vertices of P; they
satisfy the Ptolemy-Plücker relation

[Pi, Pi+1][Pi+2, Pi+3] + [Pi+1, Pi+2][Pi, Pi+3] = [Pi, Pi+2][Pi+1, Pi+3].

Therefore
1 + c = [Pi, Pi+2][Pi+1, Pi+3].

It follows that [Pi, Pi+2] = [Pi+2, Pi+4] for all i.
Now recall that n is odd and that Pi+n = −Pi for all i. This implies that

[Pi, Pi+2] = [Pn+i, Pn+i+2] = [Pi+1, Pi+3],

and hence [Pi, Pi+2] has the same value for all i. Thus P is a self-Bäcklund
(n, 2)-gon, the already considered case.

Next, let n = 2k + 1. First we notice that [Pi, Pi+k+1] = c. Indeed,

[Pi, Pi+k] = [Pi+k+1, Pi+n] = [Pi, Pi+k+1].

Now consider the quadruple of vertices Pi, Pi+1, Pi+k, Pi+k+1. The Ptolemy-
Plücker relation implies that

[Pi+1, Pi+k] =
c2 − 1

c

for all i. That is, [Pi, Pi+k−1] is independent of i.
Continuing in the same way, we reduce k until we get to the case k = 2,

considered above, and we conclude that P is centroaffine regular.
Now let n = 3k. Let us scale the polygon so that [Pi, Pi+k] =

√
3/2 for

all i (as for a regular 6k-gon inscribed in a unit circle). Then [Pi, Pi+1] = t, a
constant.

Each hexagon Pi := (Pi, Pi+k, Pi+2k, Pi+3k, Pi+4k, Pi+5k) is affine-regular,
and they are all equivalent under SL2(R). Hence we assume, without loss of
generality, that the vertices of P0 are the sixth roots of unity. Let A ∈ SL2(R)
take P0 to P1. A quick calculation, using the equations

[P0, P1] = [Pk, Pk+1] = [P2k, P2k+1] = [P3k, P3k+1] = [P4k, P4k+1] = [P5k, P5k+1] = t,
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reveals that A is a rotation

A =

[
cosα − sinα
sinα cosα

]
, t = sinα.

The same argument, applied to the linear map that takes P1 to P2, shows
that this map is the same rotation, A. And so on, showing that the polygon is
regular.

Let us construct non-trivial self-Bäcklund (n, k)-gons for even n and odd k.
Start with a regular 2n-gon, and consider the midpoints of its sides. These points
are the vertices of another regular 2n-gon. Dilate the latter 2n-gon with the
center of dilation at its center. We obtain a centrally symmetric 4n-gon having a
dihedral symmetry, and this symmetry implies [Pi, Pi+k] = [Pi+1, Pi+k+1]. See
Figure 21 on the left. (The projection of this polygon to RP1 is a regular n-gon
therein).

Figure 21: Left: a self-Bäcklund (8, 3)-gon. Right: a self-Bäcklund (8, 4)-gon.

The construction of a non-trivial self-Bäcklund (2k + 4, k + 2)-gon is pre-
sented in Figure 21 on the right (where k = 2).1 This polygon has two axes of
symmetry. In the general case, one has points (a, 1), (a+ 1, 1), . . . , (a+ k, 1) on
a horizontal line with

a =

√
k2 + 8− k

4
, c =

√
k2 + 8 + k

2
.

One checks that [Pi, Pi+1] = 1 and [Pi, Pi+k+2] = c for all i.

5.4 Infinitesimal deformations of regular polygons

Here we consider the linearized problem, that is, infinitesimal deformations of
regular polygons as self-Bäcklund (n, k)-gons; this is a discrete analog of the
material in Section 3.1.

1We are grateful to Michael Cuntz for suggesting this construction.
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Call a regular polygon infinitesimally rigid as a self-Bäcklund (n, k)-gon if
each of its infinitesimal deformations in the class of self-Bäcklund (n, k)-gons is
induced by the action of sl(2,R).

Theorem 12. A regular 2n-gon is infinitesimally rigid as a self-Bäcklund (n, k)-
gon unless one of the following holds:

1. n is even and k is odd;

2. n = 2k with even k > 2;

3. there exists an integer j with 2 ≤ j ≤ n− 2 such that n = 2(k + j) and n
divides (k − 1)(j − 1).

Corollary 5.3. A regular 2n-gon is infinitesimally rigid as a self-Bäcklund
(n, k)-gon if n is odd, or if both n and k are even, k < n/2, and gcd (n, k) > 2.

Proof. The first statement of the corollary follows immediately from the theo-
rem.

For the second statement, assume that a non-trivial infinitesimal deformation
exists. We claim that k and j are coprime. Indeed, if (j, k) = p, then n =
2(j + k) ≡ 0 mod p, but (j − 1)(k − 1) ≡ 1 mod p. This contradicts to the fact
that n divides (j − 1)(k − 1). It follows that

(n, k) = (2(j + k), k) = 2(j, k) = 2,

proving the second statement.

Now we prove Theorem 12.

Proof. Let

Pj =

(
cos

(
πj

n

)
, sin

(
πj

n

))
, j = 1, . . . , 2n,

be the vertices of a regular 2n-gon. We have

[Pj , Pj+1] = sin
(π
n

)
= a, [Pj , Pj+k] = sin

(
πk

n

)
= b.

(One can rescale to have a = 1, but it is not really needed for the argument.)
We also have the respective second-order linear recurrence

Pj+1 = 2 cos
(π
n

)
Pj − Pj−1. (68)

Consider an infinitesimal deformation Pj+εVj , where Vj is an n-anti-periodic
sequence of vectors, that is, Vj+n = −Vj for all j, and assume that the resulting
polygon is a self-Bäcklund (n, k)-gon. By applying a dilation, we may assume
that the constant a does not change. Then, calculating modulo ε2, we obtain
two systems of equations

[Pj , Vj+1] + [Vj , Pj+1] = 0, j = 1, . . . , n, (69)
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and
[Pj , Vj+k] + [Vj , Pj+k] = C, j = 1, . . . , n, (70)

where C is a constant.
Consider the system (69). Let

Vj = ajPj + bjPj+1 = cjPj + djPj−1.

Then the recurrence (68) implies that

cj − aj
bj

= 2 cos
(π
n

)
,
dj
bj

= −1.

Substitute vectors the Vj into equation (69) to obtain

aj = −cj+1, bj =
cj + cj+1

2 cos(π/n)
, dj = − cj + cj+1

2 cos(π/n)
, (71)

where cj is an n-periodic sequence to be determined.
Now consider the system (70). Substituting vectors Vj , using equation (71),

and collecting terms yields the linear system

µk−1cj − µk+1cj+1 + µk+1cj+k − µk−1cj+k+1 = C, j = 1, . . . , n, (72)

where µk = sin(πk/n).
First, we note that C must be zero. Indeed, add equations (72): the left

hand side vanishes, and so must the right hand side.
Second, system (72) has a 3-dimensional space of trivial solutions that cor-

respond to the action of the Lie algebra sl2(R). These solutions are given by
the formulas

cj = 1; cj = cos

(
π(2j − 1)

n

)
; cj = sin

(
π(2j − 1)

n

)
.

We need to find out when there are no other solutions.
To this end, consider the eigenvalues of the matrix defining the system (72).

This is a circulant matrix, and its eigenvalues are given by the formula

λj = µk−1 − µk+1ωj + µk+1ω
k
j − µk−1ω

k+1
j , j = 0, . . . , n− 1,

where ωj = ei
2πj
n , see [20].

We are interested in zero eigenvalues. One has λj = 0 if and only if

ωk+1
j =

µk−1 − µk+1ωj
µk−1 − µk+1ωj

.

Let 2α be the argument of the unit complex number on the right. A direct
calculation yields

tanα = −
sin
(
π(k+1)
n

)
sin
(

2πj
n

)
sin
(
π(k−1)
n

)
− sin

(
π(k+1)
n

)
cos
(

2πj
n

) .
59



The argument of ωk+1
j is 2πj(k + 1)/n, hence (after cleaning up the formulas)

sin

(
πj(k + 1)

n

)
sin

(
π(k − 1)

n

)
= sin

(
πj(k − 1)

n

)
sin

(
π(k + 1)

n

)
,

or, equivalently,

tan

(
πj

n

)
tan

(
πk

n

)
= tan

(
πjk

n

)
tan

(π
n

)
. (73)

Note the trivial solutions j = 0, 1, n− 1, corresponding to the action of sl2(R).
Let us assume that 2 ≤ j ≤ n− 2.

One also has other trivial solutions, when both sides of equation (73) are
infinite: n = 2j and k odd, and n = 2k and j odd. Note that, in the latter case,
k > 2. Indeed, if k = 2, then n = 4, and since 2 ≤ j ≤ n − 2, we have j = 2,
contradicting that j is odd.

Equation (73) appeared in [42] and in [4], and it was solved in [18]. This
equation has non-trivial solutions if and only if n = 2(j + k) and n divides
(j − 1)(k − 1). This completes the proof.

Remark 5.4. As we know from Theorem 11, if n is even and k is odd, or if
n = 2k, non-trivial self-Bäcklund (n, k)-gons indeed exist. The smallest values
in case 3) of Theorem 12 are k = 4, n = 30. Does there exist a non-trivial
self-Bäcklund (30, 4)-gon?

Remark 5.5. One wonders whether the symmetry between k and j in the
formulation of Theorem 12 corresponds to some kind of duality between self-
Bäcklund (n, k)- and (n, j)-gons.

A From the centroaffine plane to the hyperbolic
plane

In this appendix we connect two geometries associated with the group SL2(R),
the centroaffine and the hyperbolic ones.

Consider the 3-dimensional space of quadratic forms ax2 + 2bxy + cy2 with
the pseudo-Euclidean metric given by quadratic form b2−ac, the negative of the
determinant of the quadratic form. The projectivization of the subspace of the
positive-definite forms is the hyperbolic plane H2; the degenerate forms com-
prise the circle at infinity. In the modern literature, this approach to hyperbolic
geometry was developed in [6].

In the coordinates (u, v, w), such that

a = u+ v, b = w, c = u− v,

one has the standard Minkowski metric v2 + w2 − u2. The unit-determinant
quadratic forms comprise the hyperboloid of two sheets, and the condition a+
c > 0 describes its upper half, the pseudo-sphere.
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A “unit” central ellipse of area π is an SL2(R) image of the unit circle, given
by an equation of the form ax2 + 2bxy+ cy2 = 1 with ac− b2 = 1 and a+ c > 0.
This defines a point of the hyperbolic plane H2 in the pseudo-sphere model.

Likewise, a central hyperbola, which is an SL2(R) image of the “unit” hy-
perbola xy = 1, is given by an equation of the form ax2 + 2bxy + cy2 = 1 with
ac− b2 = −1. It defines a point of the hyperboloid of one sheet.

Lemma A.1. Let a unit central ellipse ax2 + 2bxy+ cy2 = 1 and a unit central
hyperbola a′x2 + 2b′xy + c′y2 = 1 be tangent at point (x, y). Then the vectors
(a, b, c) and (a′, b′, c′) are orthogonal.

Proof. The group SL2(R) acts transitively on the space of contact elements of
the punctured plane whose line does not pass through the origin. And it acts by
isometries on the space of quadratic forms. Therefore it suffices to consider the
point (1, 0) and the vertical direction. In this case the two conics are x2 +y2 = 1
and x2−y2 = 1, and the vectors (1, 0, 1) and (1, 0,−1) are indeed orthogonal.

To a point (x, y) of the punctured plane there corresponds the affine plane
ax2 +2bxy+cy2 = 1 in the 3-dimensional space of quadratic forms. The normal
vector of this plane is isotropic, and this plane lies above the origin. Hence its
intersection with the pseudo-sphere is a horocycle in H2. The symmetric point
(−x,−y) yields the same horocycle.

To summarize, a point of the centoraffine plane is a horocycle in H2, and a
unit central ellipse is a point of H2.

Let γ(t) be a centoraffine curve. The osculating ellipse at a point (x, y) =
γ(t) is a unit central ellipse tangent to γ at this point. As t varies, one obtains
a curve γ∗(t) ⊂ H2, the dual curve of γ. Due to the central symmetry of γ,
this curve closes up after t is increased by π. Equivalently, the curve γ∗ is the
envelope of the horocycles corresponding to the points of the curve γ.

Lemma A.2. If [γ(t), γ′(t)] = 1, then |γ∗(t)′| = |1 + p(t)|.

Proof. Let γ(t) = (x(t), y(t)). Then xy′ − x′y = 1.
The osculating ellipse at a point (x, y) satisfies the equations

ax2 + 2bxy + cy2 = 1, (ax+ by, bx+ cy) · (x′, y′) = 0.

Taking ac− b2 = 1 into account, one solves these equations to obtain

a = y2 + y′2, b = −(xy + x′y′), c = x2 + x′2.

This is the equation of γ∗.
Next, x′′ = px, y′′ = py. Then

(γ∗)′ = (1 + p)(2yy′,−(x′y + xy′), 2xx′),

and |(γ∗)′| = |1 + p|, as claimed.

Let k be curvature of the curve γ∗.
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Lemma A.3. One has

k =
1− p
1 + p

or (1 + p)(1 + k) = 2.

For example, when γ is a unit central ellipse with p = −1, the dual curve is a
point, and the formula accordingly gives k =∞. If γ is a unit central hyperbola
with p = 1, then the formula gives k = 0. Indeed, Lemma A.1 implies that γ∗

is a straight line, the intersection of the pseudo-sphere with the 2-dimensional
subspace orthogonal to the vector corresponding to this hyperbola.

Proof. Let τ be the arc length parameter on γ∗. Then dt/dτ = 1/(1 + p).
The curvature is the magnitude of the projection of the vector d2γ∗/dτ2 on

the pseudosphere. If u is a position vector of a point of the pseudo-sphere and
v is a vector with foot point u, then the projection of u is given by u+ (u · v)v.

From the previous lemma, we know that

dγ∗

dτ
= (2yy′,−(x′y + xy′), 2xx′),

hence

d2γ∗

dτ2
=

1

1 + p
(2yy′,−(x′y+xy′), 2xx′)′ =

2

1 + p
(py2+y′2,−pxy−x′y′, px2+x′2).

Next,

dγ∗

dτ
· γ∗ = 0⇒ d2γ∗

dτ2
· γ∗ +

dγ∗

dτ
· dγ

∗

dτ
= 0⇒ d2γ∗

dτ2
· γ∗ = −1,

therefore the projection of d2γ∗/dτ2 on the pseudosphere is

d2γ∗

dτ2
− γ∗ =

2

1 + p
(py2 + y′2,−pxy − x′y′, px2 + x′2)−

(y2 + y′2,−(xy + x′y′), x2 + x′2) =
1− p
1 + p

(y′2 − y2, xy − x′y′, x′2 − x2),

and it remains to notice that the vector in the parentheses is unit.

Remark A.4. According to a theorem of E. Ghys, see [38], the potential p(t)
of the curve γ assumes the value -1 at least four times on the period [0, π). It
follows that the curve γ∗ has at least four cusps; in particular, it cannot be
smooth.

B Weierstrass elliptic functions

These are meromorphic functions ℘, ζ, σ : C → CP1, defined for each rank 2
lattice Λ = Z2ω + Z2ω′, where ω, ω′ ∈ C∗, ω′/ω 6∈ R. Define also Λ′ = Λ \ 0.

Alternative (useful) notation : ω1 := ω, ω2 := −(ω + ω′), ω3 = ω′, so∑
ωi = 0.
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B.1 The ℘-function

Definition:

• Infinite sum

℘(z) :=
1

z2
+
∑
λ∈Λ′

[
1

(z + λ)2
− 1

λ2

]
.

• ODE:
(℘′)2 = 4(℘− e1)(℘− e2)(℘− e3) = 4℘3 − g2℘− g3,

so e1 + e2 + e3 = 0.

• Integral formula. Let Σ ⊂ CP2 be the Riemann surface given in affine
coordinates (x : y : 1) by y2 = 4(x − e1)(x − e2)(x − e3). Then z 7→
(℘(z), ℘′(z)) defines a biholomorphism C/Λ ' Σ. The inverse Σ → C/Λ
is given by

(x, y) 7→
∫ ∞
x

dx

y
mod Λ.

The integral does not depend, mod Λ, on the integration path.

Properties: meromorphic, even, Λ-periodic, defining a double cover C/Γ →
CP1, branched over 4 pts,

℘(0) =∞, ℘(ω) = e1, ℘(ω + ω′) = e2, ℘(ω′) = e3.

Alternatively, ℘(ωi) = ei, i = 1, 2, 3,
∑
ei = 0.

At these 4 branch points, ℘′ = 0. In particular, the poles of ℘ occur at Λ
and are of order 2.

B.2 The ζ function

Definition:

• Infinite sum:

ζ(z) :=
1

z
+
∑
λ∈Λ′

[
1

z + λ
− 1

λ
+

z

λ2

]
.

• ODE:

ζ ′(z) = −℘(z), ζ =
1

z
+ holomorphic function, near z = 0.

• Integral formula:

ζ(z) =
1

z
−
∫ z

0

(
℘(u)− 1

u2

)
du.
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Properties: odd, meromorphic, simple poles at Λ, Λ-quasi-periodic ([3, p. 35]):

ζ(z + 2ωi) = ζ(z) + 2ηi, where ηi := ζ(ωi), i = 1, 2, 3.

Important relation:

ηω′ − η′ω =
iπ

2
if Im (ω′/ω) > 0.

B.3 The σ function

Definition:

• Infinite product

σ(z) = z
∏
λ∈Λ′

(
1− z

λ

)
exp

(
z

λ
+

z2

2λ2

)
.

• ODE
σ′

σ
= ζ.

Properties: entire, quasi periodic [3, p. 37]:

σ(z + 2ωi) = −e2ηi(z+ωi)σ(z),

where ω1 = ω, ω2 = −(ω + ω′), ω3 = ω′, ηi = ζ(ωi), so that
∑
ωi =

∑
ηi = 0.

B.4 Addition formulas

Express the relations between ℘, ζ, σ at u± v, u, v [3, p. 271]:

℘(u)− ℘(v) = −σ(u− v)σ(u+ v)

σ2(u)σ2(v)
,

℘(u+ v) + ℘(u) + ℘(v) =
1

4

[
℘′(u)− ℘′(v)

℘(u)− ℘(v)

]2

,

ζ(u+ v)− ζ(u)− ζ(v) =
1

2

℘′(u)− ℘′(v)

℘(u)− ℘(v)
.

B.5 Reality condition

See [3, page 104]. If g2, g3 ∈ R then 4x3 − g2x− g3 = 0 has at least 1 real root.
We want ℘ to be oscillating, that is, bounded, so we better have 3 real roots
(in case of multiple roots ℘ is not doubly periodic, that is, not elliptic). In this
case e1 > e2 > e3, ω ∈ R, ω′ ∈ iR. This is proved by showing

ω =

∫ ∞
e1

dx

y
, ω′ = i

∫ ∞
−e3

dx

y
, y2 = 4x3 − g2x− g3 = 4

∏
(x− ei).
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Also, ℘ maps

(∞, ω′] 7→ (∞, e3], [ω′, ω + ω′] 7→ [e3, e2], [ω + ω′, ω] 7→ [e2, e1].

See Figure 22. So t 7→ ℘(ω′ + t) describes a particle bouncing back and fourth
along [e3, e2].

}

}0

e1e2e3

0 !

!0

2!0

2!

! !0+
t

}

}0

e1e2e3

0 !

!0

2!0

2!

! !0+
t

Figure 22: The Weierstrass ℘ function with real invariants g2, g3 and 3 real roots
ei: its fundamental rectangle (left) and the phase plane of (℘′)2 = 4℘3 − g2℘−
g3 = 4(℘−e1)(℘−e2)(℘−e3) (right). It maps (0, ω′, ω+ω′, ω) 7→ (∞, e3, e2, e1),
and the horizontal axis {ω′+t | t ∈ R}, 2ω-periodically, onto the segment [e3, e2].

B.6 The Lamé equation

This has the form X ′′ = (A℘(z) + B)X for some constants A,B. When
A = n(n + 1) all solutions are meromorphic [3, p. 184]. By a theorem of
Picard [3, Equation (6), p. 182-3], there is then a basis of solutions which
are Λ-quasiperiodic (classically, “doubly periodic of the 2nd kind”). That is,
X(z + 2ω) = µX(z), X(z + 2ω′) = µ′X(z). In our case, n = 1:

X ′′ = (2℘(z) +B)X,

and such a basis is

X±(z) = e−zζ(±a)σ(z ± a)

σ(z)
, ℘(a) = B.

These two solutions are linearly independent if B 6= ei. The associated multi-
pliers are

µ± = e±2[aη−ωζ(a)], µ′± = e±2[aη′−ω′ζ(a)],

where ℘(a) = B, η = ζ(ω), η′ = ζ(ω).
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