
1. Overview

We look at complex line bundles from the topological viewpoint, and then from
the holomorphic viewpoint. Tensor product defines a group structure on the space
of line bundles over a space X, modulo equivalence of line bundles. For topolog-
ical line bundles we show this group is isomorphic to the 2nd cohomology group
H2(X,Z) of the base space X. The isomorphism is the first Chern class of the
line bundle. For holomorphic line bundles , we will show that this group is iso-
morphic to the Picard group of divisors modulo principal divisors. Forgetting the
holomorphic structure defines a homorphism from the Picard variety to H2(X,Z).
For Riemann surface this map corresponds to the degree of the divisor. The map
is onto and its kernel (or fiber) is the Jacobian. The Jacobian can be viewed as the
space of flat holomorphic line bundles over X which in turn is isomorphic to the
character group of H2(X,Z).

Topological Theory. The main result in the topological theory is that

(1.1) (topological line bundles)/topological isomorphism ∼= H2(X,Z).

The isomorphism takes a line bundle L to its (1st) Chern class c1(L) ∈ H2(X,Z).
One can find the statement and the proof in Chern’s book “Complex Manifolds
without Potential Theory”, p. 33-34. There are at least four ways to understand
the Chern isomorphism: by way of sheaf theory, by way of obstruction theory, by
way of homotopy theory and by way of differential geometry and curvature. The
sheaf perspective flows naturally right from the definitions. The obstruction theory
perspective is the most pictorial and visceral perspective on the Chern class. The
homotopy theory approach is often the most direct for computations and global un-
derstanding. The differential geometric approach connects to analysis, and physics
and is the way I first learned about Chern classes. The differential geometry ap-
proach is also the road by which Chern discovered these classes. In this approach
the Chern class is the deRham class represented by the curvature of a connection
on the line bundle.

Holomorphic Theory. In algebraic geometry holomorphic line bundles and
divisors are almost the same thing. Recall

Pic(X) = (divisors)/(principal divisors)

We will show that also

(1.2) Pic(X) ∼= (holomorphic line bundles)/(holomorphic equivalence) .

The structure of this equivalence is easy to see from one direction. Given a holo-
morphic line bundle, take any meromorphic section. This section may have zeros
and poles. Take the associated divisor: the sum of the section’s zeros and poles.

A holomorphic line bundle is de facto a topological line bundle, so we have a
map

Pic(X)→ H2(X,Z)

For Riemann surfaces this map is onto and represents the degree of the divisor D.
Flat line bundles and the Jacobian.
Jac(X) = Pic0(X) can be thought of as either the space of degree 0 divisors

modulo principal divisors, or as (holomorphic line bundles which are topologically
trivial)/(equivalence). Important here is that topological triviality does not imply
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(a) A line bundle with a section

holomorphic triviality. We can also think of the Jacobian in terms of flat line
bundles. ( Atiyah on Topological Quantum Field Theory.)

We present the notion of a principal G-bundle, and of a flat G-bundle. We
see how circle bundles correspond to line bundles. Flat G-bundles over X modulo
equivalence correspond bijectively to representations of π1(X) into G modulo G-
conjugation. ForG = S1 we have that the flat line bundles areHom(H1(X,Z), S1) =
H1(X,S1) = H1(X,R)/H1(X,Z) which is a 2g dimensional torus.... the Jacobian.

2. Line bundles, Informally, with examples.

Here are the informal definitions. A complex line bundle L over a space X
is a collection Lx, x ∈ X of complex lines which vary continuously with x. A
holomorphic line bundle is a complex line bundle over a complex manifold X for
which the lines Lx vary holomorphically with x. A section of a line bundle is a
continuous map s : X → L which assigns to each x ∈ X a vector s(x) ∈ Lx. The
section s is holomorphic if as a map s is holomorphic.

We go right to the motivating examples.

Example 2.1 (Tautological line bundle). A point of CP1 is a one-dimensional
complex linear subspace of C2. Attach to that point, the line it stands for, viewed as
a one-dimensional complex linear space. In this way we get a family of complex lines
depending smoothly on the points of CP1. This line bundle is called the “tautological
line bundle” over CP1. Its points consist of pairs (`, v) ∈ CP1×C2 such that v ∈ `.
Thus, if v 6= 0, then ` = [v] = span(v).

Exercise 2.2. Describe the tautological line bundle as a subvariety of CP1×C2 by
finding a polynomial equation in 4 variables which defines it here.

Example 2.3. The dual of the tautological line bundle, denoted γ∗ is the bundle
whose fiber γ∗p consists of complex linear functions γx → C.

Exercise 2.4. Describe the tautological line bundle as a subquotient of C2 \ {0} ×
C2. Subquotient means: submanifold (constraint) and quotient (by some group
operation).

Exercise 2.5. Define the tautological line bundle over CPn.
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Terminology. The tautological line bundle is sometimes also called the canonical
line bundle or the universal line bundle.

Example 2.6. The tangent bundle TX of a Riemann surface X is a complex line
bundle.

Exercise 2.7. On any complex line bundle L, and for any λ ∈ C we have the
operation of scalar multiplication by λ, acting on each Lx by scalar multiplication
by λ. How do you multiply by i on the tangent bundle of a Riemann surface ? By
eiπ/4?

Hint: Write out v = vx
∂
∂x + vy

∂
∂y , v ∈ TxX. Suppose that z = x + iy is a

holomorphic coordinate.

Example 2.8. The dual of the tangent bundle is the cotangent bundle.

Example 2.9. The bundle whose sections are (1, 0) forms is another complex line
bundle, isomorphic to T ∗X.

Example 2.10. The trivial bundle is the bundle X × C→ X.

A section of a line bundle is a continuous map s : X → L such that s(x) ∈ Lx
for each x ∈ X. If L is a holomorphic line bundle, then it makes sense to talk
about holomorphic sections. We say that s vanishes at x, or that x is a zero of s if
s(x) = 0x ∈ Lx.

Proposition 2.11. If L → X admits a nowhere vanishing section then L is iso-
morphic to the trivial bundle.

Proof. Let s be the non-vanishing section. Then s(x) is a basis for each Lx. The
map (x, λ) 7→ λs(x) defines an isomorphism X × C → L; which is linear on each
fiber and covers the identity on X.

Exercise 2.12. We have used the notion of an isomorphism between line bun-
dles. Give an informal definition of an isomorphism between line bundles. Give an
informal definition of a map between line bundles.

Exercise 2.13. Show that the tautological line bundle is not trivial.

3. Group structure on line bundles.

The tensor product over C of one-dimensional complex vector spaces is again a
complex one-dimensional vector space. Thus if L,E → X are complex line bundles
over X, so is L ⊗ E → X where (L ⊗ E)x = Lx ⊗ Ex. Tensor product gives the
space of continuous isomorphism classes of line bundles the structure of an Abelian
group. The identity is the trivial bundle

Identity: ε = X × C,
What is L−1?

Proposition 3.1. L ⊗ L∗ ∼= ε as line bundles, so that under tensor product as
multiplication we have L−1 = L∗.

Proof. L ⊗ L∗ ∼= ε = Hom(L,L) can be identifies with the line bundle whose
fiber over x is linear homorphisms Lx → Lx. The identity is a global section. Use
prop 2.11.

We will give several proofs of the following fundamental theorems, which we will
refer to as
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Theorem 3.2. [The Test Case] The group of continuous isomorphism classes of
line bundles over CP1 is isomorphic to the group Z of integers. As generator ‘1 we
can take either the tautological line bundle γ or its inverse γ∗.

Exercise 3.3. Show that γ−2 = γ∗ ⊗ γ∗ ∼= TCP1.

Theorem 3.4. The isomorphism classes of (topological) complex line bundles over
a manifold X is isomorphic to the Abelian group H2(X,Z). (See eq 1.1 above).

3.1. Formal theory. Line bundles a cocycles. In this subsection take X to be
a topological space.

Definition 3.1. A line bundle L over X is a topological space L endowed with a
continuous surjection π : L→ X such that

• (i)for each x ∈ X,π−1(x) := Lx is homeomorphic to the line C
• (ii) [local triviality], X admits a cover by open sets Uα such that π−1(Uα)

is homeomorphic to Uα ×C by a homeomorphism hα : Uα ×C→ π−1(Uα)
:

Uα × C
π

##G
GG

GG
GG

GG
hα // π−1(Uα)

π1
{{vvv

vv
vv

vv

Uα

which commutes with the projections to Uα.

Over the non-trivial overlaps Uα ∩Uβ the local trivializations hα, hβ conspire to
yield a map h−1

β ◦hα : (Uα∩Uβ)×C→ (Uα∩Uβ)×C. Item (ii) of the defintion of a
line bundle implies that this map must have the form h−1

β ◦hα(x, z) = (x, ψαβ(x, z)
where

ψαβ : (Uα ∩ Uβ)× C→ C.

Definition 3.2 (Part 2). . The functions ψαβ(x, z) just described have the partic-
ular form

ψαβ(x, z) = gαβ(x)z
for some continuous map

gαβ : (Uβ ∩ Uα)→ C∗ := C \ {0}.
The collection of gαβ are called the “transition functions” or “clutching functions”
associated to the line bundle and the particular collection {Uα, hα} of trivializations.

Remark: This part of the definition seems like the most technical. But it is
exactly the part that makes all of the Lx have the structure of a vector space. Please
compare it to the coordinate overlap condition in the definition of a manifold.

3.1.1. Equivalence of sections and trivializations. A local section of the line bundle
π : L→ X is a continuous map sα : Uα → L such that π ◦ sα is the identity on Uα.
In other words, sα(x) ∈ Lx for each x ∈ Uα.

PICTURE.
A local section which vanishes nowhere defines a local trivialization by the rule

hα(x, z) = zsα(x).

This equality is saying is that the sα give us a continuously varying choice of basis
element, or “1” for the Lx ∼= C, x ∈ Uα.
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Conversely, a local trivalization defines a local section sα(x) = hα(x, 1).
In terms of the associated local sections the transition overlap maps are defined

by
sα(x) = gαβ(x)sβ(x).

Exercise 3.5. Verify that the above relation between non-vanishing local sections
is equivalent to the original definition of the transition functions.

Example 3.6 (Tautological line bundle, redux). Take for cover U0 = {[z0, z1] :
z1 6= 0} and U∞ = {[z0, z1] : z0 6= 0}.

Then
s0([z, 1]) = ([z, 1], (z, 1))

and
s1([1, w]) = ([1, w], (1, w)).

define corresponding local sections. We see that the transition map is

g01([z, 1]) =
1
z

on the overlap U0 ∩ U∞.

Example 3.7 (Cotangent bundle of a Riemann surface, redux). Let zα be co-
ordinates on the Riemann surface with corresponding neighborhoods Uα. Then
sα = dzα is a non-vanishing local section of T (1,0)X over Uα. Comparing two such,
we get that the transition functions are just

gαβ(p) =
dzα
dzβ

(p),

the derivative of the coordinate overlap map, evaluated at points of Uα ∩ Uβ.

Holomorphic line bundles; Smooth line bundles Insist that the transition
functions gαβ be holomorphic, or be smooth, instead of merely continuous. Then
we are speaking of the category of holomorphic line bundles, or of smooth line
bundles. All the other maps, the sections sα, the local trivializations hα would
then holomorphic, or be smooth. All the above examples were holomorphic line
bundles.

3.2. Maps between line bundles. Suppose that πE : E → X,πL : L → X are
two complex line bundles, over the same space X. A bundle map φ : E → L is a
continuous map E → L which covers the identity on X :

E
π

  @
@@

@@
@@
φ // L

��~~
~~

~~
~

X

and is linear on each fiber: φx : φ|ExEx → Lx is a complex linear map.
Suppose we have locally trivialized E,L over the same collection of open sets

Uα ⊂ X. Let sα, s̃α be the corresponding local non-vanishing sections. Then,
in terms of local trivializations, φ is given by a collection φα : Uα → C of local
trivializations via:

φ(sα(x)) = φα(x)s̃α(x).



6

And one has

(3.1) φβ = g̃βαφαgαβ

where gαβ , g̃αβ are the corresponding transition functions.

3.3. Triviality.

Definition 3.3. A line bundle L is trivial if there is an invertible bundle map
between L and the trivial bundle.

A line bundle is holomorphically trivial if there is an invertible holomorphic
bundle map L→ ε.

Exercise. A bundle is trivial if and only if it admits a global nonvanishing section.
A bundle is holomorphically trivial if and only if it admits a global non-vanishing

holomorphic section.
Exercise. A bundle is trivial if and only if it admits a family of local trivializations

such that the corresponding transition functions gαβ satisfy:

(3.2) gαβ(x) = φα(x)φ−1
β (x)

for some collection of continuos maps

φα : Uα → C \ {0}.
Exercise. The tautological line bundle is not trivial.

3.4. Equivalance. As a slight variant of equations (3.2), (3.1) we observe that two
collections of transition functions define isomorphic line bundles if

g̃αβ = φαgαβφ
−1
β

for some collection of smooth maps φα : Uα → C∗.

3.5. Group structure in terms of transition functions. In our informal dis-
cussion we described how the space of line bundles modulo equivalence forms a
group under tensor product. The inverse of a line bundle was its dual.

Exercise 3.8. Suppose that gαβ are the transition functions for L. Verify that the
transition functions for L∗ are hαβ = g−1

αβ .
Suppose that g̃αβ are the transition functions for another line bundle E. Verify

that hαβ = g̃αβ/gαβ are the transition functions for the line bundle E ⊗ L∗ =
Hom(L,E).

3.6. Cocycle conditions. Observe that from the definitions we have that

gβα = 1/gαβ

and that:
gαβgβγgγα = 1

is the constant function 1 on any triple overlap Uα∩Uβ ∩Uγ . These two conditions
are called “cocycle conditions”.

Conversely,suppose we are given a cover Uα of X and collection of continu-
ous functions gαβ : Uα ∩ Uβ → C∗, on the overlaps which satisfying this cocycle
condition. We can define a complex line bundle over X by forming the disjoint
union of the Uα×C and gluing by using the equivalence relation that declares that
(x, zα) ∼ (x, zβ) if and only if gαβ(x)zβ = zα.
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The trivial cocycle is one defined by gαβ = hαh
−1
β for some collection of functions

hα : Uα → C∗. We have seen that two cocycles represent equivalent line bundles if
and only if their ‘difference’ gαβ g̃−1

αβ is a trivial cocycle.
We formalize and codify this with the language of sheaves and sheaf cohomology.

Write C∗ for the sheaf of continuous functions on X with values in C∗ := C \ {0}.
Thus C∗ assigns to each open set U ⊂ X the group of all continuous functions g :
U → C∗. The group multiplication of two such functions is pointwise multiplication.

Proposition 3.9. The group of line bundles modulo continuous equivalence is iso-
morphic, to the 1st sheaf cohomology group H1(C∗) where C∗ is the sheaf of contin-
uous functions on X with values in the multiplicative group C∗.

and we have the holomorphic version of this theorem:

Proposition 3.10. The group of holomorphic line bundles modulo holomorphic
equivalence (over a complex manifold X) is isomorphic, to the 1st sheaf cohomology
group H1(O∗) where O∗ is the sheaf of nowhere vanishing holomorphic functions
on X – that is to say: holomorphic functions taking values in the multiplicative
group C∗.

3.7. Sheaves, cocycles, sheaf cohomology. Def. Presheaf. Sheaf.
Def. Cocycle for an index set...; The δ map.
Def. Sheaf cohomology.
Short exact sequence of sheaves leads to long exact sequence of sheaf cohomolo-

gies.
The sequence

0 // Z // C e2πi() // C∗ // 0
( Cf. p. 139 Griffiths Harris.)
Will show: H1(C) = H2(C) = 0.
Cor: H1(C∗) = H2(X; Z).
This is theorem 3.4. The connecting homomorphism δ here has for its image

the Chern class of the corresponding line bundle. x
Difference between sheaves of analytic functions vs. smooth functions.
Fine sheaves: partitions of unity. Big theorem for fine sheaves H1 = 0 = H2 =

. . ..
Computations: good cover.
Test case: Computation of H2(CP1,Z) using a good (tetrahedron-induced)

cover of S2 = CP1.

4. Divisors as holomorphic line bundles.

If L is a holomorphic line bundle over a Riemann surface X and s : X → L is
a meromorphic section of L, we have the corresponding divisor (s) = (s)0 − (s)∞.
Any other meromorphic section s1 can be written as s1 = fs for some meromorphic
function f . Thus (s1) = (s) + (f) differs from (s) by a principal divisor. It follows
that this construction leads to a well defined map from the line bundle to the Picard
variety of divisors modulo principal divisors.

Theorem 4.1. The map associating a holomorphic line bundle to its divisor is
an isomorphism between holomorphic equivalence classes of line bundles and the
Picard divisor.
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Cf. theorem ?? above.
To construct the inverse map, from the Picard variety to the space of holomorphic

isomorphism classes of line bundles, we need to see how to build a line bundle out
of a divisor.

References: Donaldson, p. Miranda, p. 347. Griffiths-Harris p. 133-134.
]

4.1. The line bundle of a point. .
Start with the simplest nontrivial case of D = p, the divisor of a single point.

Cover X with two charts, U0 = X \{p} and U1 a coordinate neighborhood centered
at p. Let f = z be any coordinate vanishing at p. Set

g01 =
1
z
, g10 = z

thus defining a line bundle Lp. Over U0 we have the local section s0 represented
by 1. Since

s1 = g10s0

we see that this same local section is given by z in U1. Being defined everywhere,
it is a global section vanishing exactly at p, with the order of vanishing being 1.

Example: The dual of the tautological bundle corresponds to the line bundle
associated to the point at infinity.

4.2. The line bundle of a general divisor. . Now, let D = Σnipi be a general
divisor. Cover X by charts U0, Ui so that pi /∈ U0 and the Ui are coordinate charts
with coordinates zi centered at pi. Set

gi0 = znii , gij = znii /z
nj
j , g0i =

1
znii

Verify that the section corresponding to the local trivialization over U0 – the
section represented by 1 over U0 – extends uniquely to a global meromorphic section
with zeros at the pi of order ni if ni > 0, and poles at the pi of order |ni| when
ni < 0.

These bundles just constructed are holomorphic: The transition overlaps are
all holomorphic. When we piece them together to build our global complex 2-
manifold L, that manifold is complex holomorphic. The projection map L → X
is holomorphic. The section built is meromorphic. We are in the category of
holomorphic line bundles!

5. Obstruction theory.

Above, we took the inverse image of the zero section, minus the inverse image
of infinty and made them into a divisor. We can perform these same operations
in the continuous category. When viewed homologically we get the obstruction
theoretic point of view on the Chern class. Perhaps the original theorem from this
perspective is the Poincare Hopf theorem.

Theorem 5.1. Let X be a compact oriented surface and v : X → TX a C1 vector
field on X with isolated zeros. Assign a degree to each zero p, as per vector fields
in the plane. Then

χ(X) = Σ{p∈X;v(p)=0}degp(v).
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(a) The associated divisor is marked with Xs.

This theorem relates the Euler characteristic of X to a ‘divisor’ on X formed
out of the zeros of the section v. It is a special case of

Theorem 5.2. Let L → X be a complex line bundle over the compact oriented
surface X. Let s : X → L be a section with isolated zeros. Then

〈c1(L), [X]〉 = Σp∈X:s(p)=0degps.

How to define degps? Choose any local trivialization over an open set U con-
taining p, Relative to this trivialization s becomes a function s̃ : U → C having a
zero at p ∈ U . Choose a norm on C so that s̃/‖s̃‖ : S1

ε → S1 represents a map from
the circle to itself. Here S1

ε is a small circle surrounding p, Since X is oriented we
may suppose that U ∼= V ⊂ R2 is oriented and hence S1

ε is oriented. The degree of
s at p is the degree of this map from the circle to itself. One verifes that if we write
s relative to a different trivialization, the degree does not change. (The transition
map gαβ extends as a non-vanishing function across the entire disc centered at p
bounding S1

ε .
In case p is a transverse zero then degps is the sign of the determinant of ds̃p.

Verify that this is independent of the choice of local trivialization.

Exercise 5.3. Formulate the obstruction theoretic formula for c1 of a general line
bundle L over a smooth n-dimensional manifold X.

Hint: Take a section s. Perturb it to be transverse to the zero section. Represent
s−1(0) = ker(s) as a cycle of codimension 2 on X. The Chern class paired with a
2-dimensional homology cycle , must yield an integer. How does this 2 dimensional
cycle intersect with ker(s)?

Exercise 5.4. Suppose that s is a meromorphic section of a holomorphic line
bundle with a pole of order n at p. By choosing a norm near p and cutting off s to
the neighborhood s : ‖s‖ ≤ 1

ε show that we can find a section w which agrees with s
off of a small neighborhood of p is continuous in this neighborhood of p and has a
zero of degree −n at the pole. (Use 1/zn = z̄n/r2n. )

Test case: the bundles over CP1....

6. Homotopy Theory.

6.1. Pull-back bundles. Suppose that f : X → Y is a continuous map and that
πY : L→ Y is a complex line bundle. We can use f to pullback the line bundle L
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for yield a bundle f∗L→ X:
(f∗L)x = Lf(x)

The associated commutative diagram is

f∗L //

��

L

πY

��
X

f // Y

Set-theoretically

f∗L = {(x, v) ∈ X × L : f(x) = πY (v)} ⊂ X × L.

Lemma 6.1. Let X be compact and L→ X × [0, 1] be a line bundle over X times
the interval. Let it : X → X × [0, 1] be the inclusions it(x) = (x, t) for 0 ≤ t ≤ 1.
Then all the line bundles i∗tL → X are isomorphic to one another. In particular
i∗0L
∼= i∗1L.

Proof. My favorite proof involves choosing an Ehreshman connection for X ×
[0, 1]→ X. Maybe see next section?

Corollary 6.2. Suppose that f ∼ g : X → Y are homotopic maps and that L→ Y
is a line bundle. Then f∗L ∼= g∗L as line bundles over X.

Corollary 6.3. If X is a contractible space and L→ X is a line bundle then L is
the trivial bundle.

6.2. Universal bundles. Suppose we could find a space U , endowed with a line
bundle LU → U such that for every compact space X and every line bundle L→ X
there exists a map f : X → U such that L ∼= f∗LU . Then, according to corollary
??, the theory of line bundles over X would be essentially the same as the theory
of the space [X,U ] of homotopy classes of maps X → U.

We call such a space a “universal space” for line bundles.

Proposition 6.4. CP∞ with its tautological line bundle is universal for line bundles
over compact spaces.

CP1 with its tautological line bundle is universal for line bundles over compact
surfaces.

Sketch proof. Let X and L be given. Cover X by finitely many trivializations Ui,
i = 1, . . . , N + 1 for L with associated sections si : Ui → L which are non-vanishing
over Ui. Let ρi be a partition of unity subordinate to the Ui. Then the sections
ρisi : X → L are global sections. Put them together into one ‘vector” of length
N + 1: s̃(x=(ρ1(x)s1(x), ρ2(x)s2(x), . . . ρN+1(x)sN+1(x)). To try to make sense of
this as a vector in CN+1 take any local trivialization hα whose base Uα contains
the the point x. Expressing the ρi(x)si(x) in this local trivialization we get a point
of CN+1. The vector never vanishes since the ρi are a partition of unity and the si
are non-vanishing. If we choose another trivialization hβ , then this this vector is
multiplied the scalar function gαβ(x). Consequently [s̃] is well defined as a point of
CPN .

We leave it to the reader to show that f∗γ ∼= L.
Now CP∞ is the projective limit of the CPN so we can view [s̃] as a map into

CP∞ and we again get that f∗γ = L.
QED
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with the property that for every x there is an i such that si(x) 6= 0 defines a
map X → CPN .

If X is a CW complex and Y is a compact k-dimensional manifold, then any
map X → Y can be homotoped onto the k-skeleton of Y . Suppose that there are
no cells in dimension k + 1. Then two such maps are homotopic if and only if the
corresponding retractions onto the k-skeleton are homotopic.

CP∞ is a CW complex with only even dimensional cells. These cells fit together
like 0 ⊂ CP1 ⊂ CP2 ⊂ . . .. It follows that if dim(X) = 2 then the homotopy
classes of maps [X,CP∞] is isomorphic to the homotopy classes of maps [X,CP1].
Classical degree theory asserts that two maps f, g : X → CP1 are homotopic if and
only if they have the same degree d ∈ Z.

From this we see that the degree of the inducing map f → CP1 is a complete
invariant of the topological type of the line bundles L→ X.

General case. H∗(CP∞) is the polynomial ring in a single generator u in degree
2. (This u is the class of the Kahler form which is also the Chern class of the dual
of the universal line bundle over CP∞.) The Chern class c1(L) ∈ H2(X,Z) from
the previous section – the cocycle version – is related to u by

c1(L) = f∗u ;L = f∗γ∗

7. Analytic theory

Connections.
Curvature. Curvature two-form.
Chern class as 1

2πi times deRham class of the curvature two-form
Independence of choices.
The ‘Levi-Civita connection” of a holomorphic complex line bundles with a fiber

Hermitian metric.

8. Higher dimensional divisors and their line bundles

Use meromorphic or rational functions fi whose local vanishing on open sets
(affine sets) Ui define divisors Di of D = ΣniDi. Thus: the support of D in Ui
is defined by fi = 0. If fj defines the same divisor on Uj then fi/fj is nowhere
vanishing on Ui ∩ Uj . Set

gij = fi ∩ fj : Ui ∩ Uj → C∗

thus defining meromorphic transition functions for a line bundle.
If none of the Da intersect U0 we have the function 1 representing the divisor on

U0.
The same analysis as before now gives us a line bundle with a section (the section

1 on U0 whose divisor is the given divisor D.
.....

Definition 8.1. A line bundle L → X over a Riemann surface is called a holo-
morphic line bundle if L is a complex manifold and if all the maps π, hα, gβα in the
definition of ‘line bundle’ are holomorphic functions


