
1. 1. Outline.

1.1. What’s a Riemann surface? Recall manifolds.

Definition 1.1. A Riemann surface is a 2-dimensional real manifold whose tran-
sition functions ψα,β are all restrictions of holomorphic maps C→ C.

1.2. Examples.

1. C
2. CP 1. Also called Ĉ,C∞ ∶= C∪{∞}, S2. Charts thereon. Covered by two open

sets. Overlap map z ↦ 1/z.
3. {(z,w) ⊂ C2 ∶ w2 = f(z)} provided ... ! Uses holomorphic version of IFT.

State it!
Viewing the RS of w =

√
z2 − 1 by making branch cuts.

Of z =
√

(z − r1)(z − r2) . . . (z − rn)
Generalizing in two directions. a) F (z,w) = 0 in C2 provided...
b) the Riemann surface of any analytic function germ z ↦ h(z)
4. Gauss: any analytic oriented surface embedded in R3 [Riemannian surfaces]
Uses a) Existence of “isothermal coordinates” [ hard work! - Gauss]
b) Any conformal diffeo is holomorphic or anti-holomorphic [ easy - local coord

computation]
5. Quotients of known Riemann surface by discrete groups “acting properly

discontinuously”: Eg flat torus as C/Z + iZ.
6. Algebraic curves. These are curves in projective spaces. To get such a curve

in CP2 choose a homogeneous polynomial in 3 variables. For example, the Fermat
surfaces are xn + yn + zn = 0. Relate to Fermat’s last theorem. Multiply z by −z
when n is odd. Bring to other side. Look for rational solutions ...

IFTs and condition for curve to be smooth here ...

1.3. Maps between. A map between Riemann surfaces is a map whose expression
in any local coordinates is holomorphic.

A biholomorphism is a holomorphic map which is invertible. This inverse is
necessarily holomorphic.

Examples.
1. Look at z ↦ exp(z). Since exp(z) = exp(z + 2πik) we have that exp(z) is

a well defined map on the quotient C/(2πiZ). This quotient space is a cylinder.
A fundamental domain consists of a horizontal strip bounded by two parallel lines
separated by 2π. Thus exp maps the cylinder biholomorphically onto the punctured
plane C ∖ {0}.

2. Take the hyperelliptic surface above. The projection (z,w)↦ z is a holomor-
phic map which is 2:1 at all points except over the branch points, these being the
points where p(z) = 0. Near the branch points we can choose local coordinates on
the surface so that the map looks lie ξ ↦ ξ2.

3. [Hard !] The Riemann mapping theorem. Any bounded simply connected
domain in C is biholomorphic to the open unit disc ∣z∣ < 1.

4. [Moderately Hard]. The open disc is NOT biholomorphic to the entire complex
plane C.

5. [Elliptic curves]. More complicated example. The two-torus, realized as
C/(Z + iZ), forms a Riemann surface. Going up to the universal cover, we try
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to make functions on it as holomorphic functios invariant under z → z + 1 and
z → z + i. There are none except constants. But there are meromorphic functions.
These are the famous elliptic functions. They necessarily have poles within, or on
the boundary of each unit square. The classic one (see Ahlfors) is the Weierstrauss
P-function, written with curly Gothic letters: P(z). The mapping (x, y) = P,P ′
take the torus onto an “elliptic curve” y2 = x2 + g2x+ g3 which completes into CP 2

to a cubic curve. The coefficients g2, g3 are given by infinite sums over the Gaussian
integers.

6. To map an algebraic curve X ⊂ CP1 onto CP1 choose any point P ∉ X,
P ∈ CP1. The set of all lines passing through P forms a CP1. For each x ∈ X map
x to the line Px.

Bezout’s theorem asserts this map is d ∶ 1 where d is the degree of the curve.
The singular values of the map are lines tangent to the curve passing through P .

2. History ?

Complex variables beginning. Poncelet - projective space. Gauss. Riemann.
Before them: Abel. Jacobi . Elliptic functions and elliptic curves. ..

3. Classification of compact Riemann surfaces.

I. Prequel. The Classification of compact oriented topological surfaces. Puncture
a hole in the surface. The result collapses (homotopes) to the wedge of 2g circles.
This number g is the genus.

One can construct such a surface by adding g handles to a sphere. Any two such
surfaces having the same genus are homeomorphic. They are also diffeomorphic.

We thus have a complete classification of these surfaces. There is exactly one for
each g = 0,1,2, . . ..

To get the classification, Morse theory is a big help. See Donaldson’s book.
There is a standard polygonal model of the genus g surface which shows us its

fundamental group. Mention combinatorial topology. Stillwell’s book.
Draw this polygon for g = 2, g = 1, general g. ; write the standard presentation

for the fundamental group. The fundamental group has 2g generators, written
Ai,Bi, i = 1, . . . g with a single relation

C1C2 . . .Cg = 1 where Ci = AiBiA−1
i B

−1
i

To reiterate: Any two compact oriented surfaces of genus g are diffeomorphic.
However, they are not equivalent as RS’s, assuming they admit RS structures.

2. To show that every genus g surface admits a RS structure we can use the hy-
perelliptic model. Choose N = 2g + 2 distinct points. For simplicity, place them on
the real line in order: x1 < x2 < x3 < . . . x2g. Form p(z) = (z−x1)(z−x2) . . . (z−xN)
and let M be the RS of

√
p(z) - compactifying at infinity as per the embed-

ding into CP 2. We compute by using the view of M as a 2-sheeted cover over
S2 = CP1 that M is obtained by adding N/2 tubes corresponding to the N/2 cuts
[x1, x2], [x3, x4], . . . , [xN−1, xN ]. Inflate each cut to a tube. We have N/2 tubes
joining two spheres -the two sheets. One tube joining two S2 is diffeomorphic to S2.
Each additional tube corresponds to adding a handle. So we have added N/2−1 = g
handles.

PICTURES !
2. Uniformization theorem.
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The universal cover Σ̃ of ANY connected compact Riemann surface Σ is itself a
Riemann surface [easy]. The following is hard and deep.

Theorem 3.1 (Uniformization). Every simply connected RS is biholomorphic to
one, and only one of the the following three models M

● a) CP 1 (genus 0)
● b) C (genus 1)
● c) the open unit disc D (genus 2 and greater)

Another model for (c) is the Poincaré upper half plane H: the open disc is
biholomorphic to the upper half plane H.

The biholomorphisms (invertible holomorphic maps) in all cases are Lie groups.
They are
PGL(2,C) acts on CP 1 by fractional linear transformations. 6 dimensional
Addition and multiplication - so the “ax + b ” group of affine transformations.

4 dimensional
PSL(2,R) ⊂ PGL(2,C) acts on H. 3 dimensional
The fundamental group Γ = π1(Σ) embeds into the group of holomorphic auto-

morphisms of the model universal cover, acting in a nice fixed point free manner

(“properly discontinously”) so that the quotient space /̃Γ is a nice Riemann surface,
biholomorphic to the original Σ.

3. [Teichmuller space and moduli space. ] How many RS’s of a given genus
are there?

As far as real diffeomorphisms are concerned, there is only one. Call two RS’s
equivalent (over C) is there is holomorphic diffeomorphism between them. We can
then talk about the ‘space’ of all RSs of genus g.

Theorem 3.2 (A big deal). The space of RSs of a given genus forms a connected
complex algebraic variety of complex dimension 3(g − 1) when g > 1. In particular,
the dimension of htis space grows linearly with g.

This space is called “moduli space” . It is the quotient of space diffeomorphic to
C3g−3 by the action of a ‘big’ discrete group called the mapping class group.

The hyperelliptic ones form a subvariety. One can count dimension by using the
locations of the N = 2g+2 roots as variables and then modding out by the action of
the group of Mobius transformations. This count yields N − 3 = 2g − 1 hyperelliptic
RSs. Since 3g grows faster than g , for large g we see that most RSs are NOT
hyperelliptic. We get 3g−3 = 2g−1 when g = 2. Beyond g = 2 we expect ‘most’ RSs
are not hyperelliptic.

4. Genus and fundamental group.

Various characterizations of : χ(Σ) = 2 − 2g where χ = b0 − b1 + b2 = V −E +G.
where bi = dim(Hi(M,R)).

2g = # of circles to which M deformation retracts onto upon having a disc
deleted from M .
b1 = 2g
rank(H1(Σ,Z) = rank(H1(Σ,Z)) = dim(H1(Σ,R)) = 2g.
g = # handles added to a sphere to build surface.
2g = # of simple curves you must remove in order to make the result connected

and simply connected.
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Two analytic characterizations of genus.

1. The genus g is the (complex) dimension of the space of holomorphic differen-
tials.

2. If I place any g + 1 distinct points on M there is a meromorphic function
having these points as simple poles and no other poles.

The assertion that this number g + 1 works is Donaldson, prop 26, p 113, com-
bined with the duality between H0,1 and H1,0. Indeed, he shows any number
N > dim(H0,1) of points can be chosen as simple poles.

To make an invariant out of this ‘pole placement number” we have to also say
“we can’t do better”: Namely: it is impossible to build such a function having g
or fewer simple pole points, provided these points are chosen “generically” Indeed
this is a theorem provided M is not hyperelliptic ! See Miranda, Cor. 2.9, p
210. It is a beautiful theorem, using the canonical embedding M → CPg−1 defined
by the holomorphic differentials to define what it means for g points to be ‘generic’:
their image under the canonical embedding is generic in the linear algebra sense:
these g image points spans all of CPg−1.

For special positions of g points it may be possible to do better. Indeed, the
version of RR that Miranda calls the Geometric Form of RR tells precisely that
you can, and by how much in terms of the dimension of the span.

NB. If M is hyperelliptic just take a function like z or 1/z with a simple pole
on CP1 = C ∪ {∞}. Pull it back by the map M → CP1, assuming the pole is not a
branch point, to get a meromorphic function on genus g M having exactly TWO
simple poles. They are related by symmetry, since they project to the same point,
so they are not ‘generic”. Indeed, a characterization of ‘hyperelliptic’ is that it
admist a meromorphic function with exactly two simple poles.

More .. on ‘doing better” or not. That usually you cannot do it with fewer must
be the assertion that typically, L(K −D) = 0 if D consists of g generic points. I
don’t know how to do this, but it must work out. Also, it must be a theorem that
a) L(K −D) = 0 if D consists of g + 1 distinct points . Here we are using RR :
L(D) = d+ (1− g)+L(K −D) = 1+L(K −D). and we want L(D) = 2, the constant
functions and one other. See Cor in Miranda to work out details ...!

3. A metric view of uniformization. On the metric level, a la Gauss’s isothermal
coordinates, the uniformization theorem is as follows :

Every Riemannian surface (as opposed to Riemann surface) admits a metric
in its same conformal class which has constant curvature K.

The simply connected models for the Riemannian surfaces of constant curvature
COMPLETE riemannian manifolds are the SAME as above,

a) K > 0. Σ = S2(
√
K) = CP 1 = Σ̃ b) K = 0. Σ̃ = R2 = C c) K < 0, Σ̃ = D2 = H,

Poincare metric scaled.
The group of rigid motions (orientation preserving isometries) in all cases is a

subgroup of the group of holomorphic automorphisms. Only in the last case are
the two groups equal!.

The fundamental group of the compact Riemann surface embeds as a discrete
subgroup of this group of rigid motions.

Depending on the genus,
a) K > 0. Σ = S2 = CP 1 = Σ̃ b) K = 0. Σ = T2, a flat torus, which is R2/Z2 c)

K < 0. Σ̃ =D2 =H.
The action of the fundamental group Γ on Σ̃ is by isometries.
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We can realize the quotient X̃/Γ by using Dirichlet (or “Voronoi cells) to find a

‘fundamental region ’ for the action of Γ. So: – Γ acts on Σ̃. Pick any point x0 ∈ Σ̃.
Look at its orbit Γx0 – a “lattice” in the model space Σ̃. Set R(x0) = {y ∈ M ∶
d(x0, y) ≤ d(xi, y)∀xi ∈ Γx0 ∖ {x0}}. Then R(x0) is the interior of a finite-sided
geodesic polygon and we can make Σ by using Γ to identify edges.

The uniformization theorem plus an understanding of the relation between the
universal cover of a surface (manifold) and the original implies

Theorem 4.1. Every compact RS is the quotient of one of the three models M by
a “co-compact” lattice: an embedded image of π1(Σ) into Aut(M), where the image
acts propertly discontinuously on M

4.1. How many Riemann surfaces are there? For each g, topologically there
is only one.

Teichmuller theory: the space of inequivalent Riemann surfaces forms 6g − 6-
dimensional manifold with singularities known as “moduli space”:

Mg = compact Riem surfaces of genus g / biholomorpisms

This moduli space has a complex structure so forms a 3g − 3 dimensional complex
manifold which is in fact algebraic. Its singularities correspond to the Riemann
surfaces with “additional symmetries”.

Using the Poincaré upper half-plane representation, we are looking for parame-
terizing a particular class of representations, i.e injective homomomorphisms

ρ ∶ Γ→ SL(2,R)
The homomorphism can be specified by g matrices ρ(Ai), ρ(Bi) subject to the
single relation ... Counting: 3 parameters for each of ρ(Ai), ρ(Bi), for 3 ∗ 2g = 6g.
Constraints 3 for the relation. Then quotient by inner automorphisms of SL(2,R)
: subtract another 3. 6g − 3 − 3 = 6g − 6 real parameters.

We cannot use just any such homomorphisms. We require the image of ρ
acts properly discontinuously on the upper half plane. This requires that each
ρ(Ai), ρ(Bi) be hyperbolic, among other things...

The complex structure on moduli space is another more complicated story ...
For g > 1 “most’ Riemann surfaces have no symmetries: no non-identity biholo-

morphisms.

4.2. Function theory on Riemann surfaces. Again, Σ a compact Riemann
surface.

Proposition 4.1. Σ admits no (global) holomorphic functions.

Proof. Homework. Use the maximum modulus theorem from complex variables
and the fact that on a compact manifold any function (eg ∣f(z)∣ ) has a minimum.

Lacking any holomorphic functions, but desiring of some functions, we allow for
meromorphic functions.

Definition of. Verification.
Example CP 1. f(z) = z. (What’s it look like, near ∞?) f(z). At infinity we use

the chart w with w = 1/z. Then the function z becomes 1/w: infinity is a simple
pole.

Theorem 4.2. Any meromorphic function on CP 1 is the quotient of two polyno-
mials
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Example. Elliptic curves. The Weierstrass P function. Any meromorphic func-
tion on an elliptic curve is a rational function of P and its derivative P ′.

In terms of the model, an elliptic function is a meromorphic function on C
invariant under the period.

A topological perspective. A meromorphic map is precisely the same thing as a
holomorphic map to C ∪ {∞} = CP 1. Poles get sent to infinity.

Degree. Degree of a map from Σ to Σ′. Degree and local sum formula for, using
notion of multiplicity.

A surprising theorem. See Donaldson, Cor 1 , p. 45.
This requires the notion of degree and the summation formula for degree in terms

of mulitplicities, valid at ALL points p and for all holomorphic maps between cpt
RSs :

deg(f) = Σx∶f(x)=pmultp(f)

The multiplicity is always a positive number. Locally we can choose coord z,w in
the domain and range, centered at p and x0 with f(x0) = p so that w = f(z) has
the form w = zk. Then k is the multiplicity of f at x0.

Theorem 4.3. If Σ admits a meromorphic function having a single simple pole
then Σ = CP1.

Proof. To say f ∶ Σ⇢ C has a simple pole at pmeans that f(z) = a−1
z
+a0+a1z+. . ..

In terms of the chart at infinity on CP 1 we get that w = 1/f(z) = 1/(a−1
z
+ a0 +

a1z+ . . .) = z/(a−1+a0z+ . It follows that f has degree 1. By the Riemann- Hurwitz
theorem Σ must have the genus of CP 1

************************
Higher genus . Fuchsian functions. Holomorphic functions on the upper half

plane invariant under the realization of the fundamental group defining the surface:

f(γz) = f(z), γ ∈ Γ ⊂ SL(2,R).

2. Holomorphic characterization of g. The genus is the (complex) dimension of
the space of globally defined holomorphic one-forms. Locally such an ω has the
form f(z)dz.

Eg. g = 0. The only holomorphic one-form on CP 1 is 0 – ω = 0dz/ Dually,
CP 1 admits many holomorphic vector fields – indeed the space of such is complex
three-dimensional, corresponding to the dimension of PGL(2,C).
g = 1. Any elliptic curve is holomorphic to C/Λ, Λ = Z-span of 1, τ = a + ib with

b > 0. The form dz on C is well defined on the torus and any other holomorphic
one-form is a complex multiple of it. The space of holomorphic forms is complex
1-dimensional.

Dually, the space of holomorphic vector fields is also complex 1 dimensional.
They are all of the form a ∂

∂z
, a ∈ C.

g > 1. Lets take the hyperelliptic case, w2 = p(z) where all the roots of p are
simple.

HW. Use the defining relation to verify that dz
w

is nonzero and has no pole at the
branch points, these being the zeros of p. Also look at what happens at infinity.

The forms dz
w
, zdz
w
, z

kdz
w

form a basis for the holomorphic differentials, where
2k + 1 is the degree of
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5. The great synthesis

Mumford’s “great sythesis” taken from the beginning of his lecture notes (a
book) ‘Curves and Their Jacobians”.

The following objects are naturally equivalent:
a) [Algebra] Finitely generated field extensions of C having transcendence degree

1.
b) [Geometry] Algebraic curves in CPn
c) [Analysis ] Compact Riemann surfaces
We have been talking about (c). Let’s talk a bit about (a) and (b) for awhile.

5.1. Algebra and field extensions. Transcendence degree.
Let C(x) = field of rational functions in a single complex variable x, which is the

same as the ring of fractions of the polynomial ring C[x]. It is a “field extension
of C” of transcendence degree 1.

Eg: consider e ∈ R. It satisfies no polynomial equation with rational coefficients.
so Q[e] is a field extension of Q, finitely generated (by e) and having transcendence

degree 1. On the other hand Q(
√

2) has transcendence degree 0.

Consider two fields K ⊂ K̃. The transcendence degree of K̃ over K is positive
if the vector space K̃/K is infinite dimensional. If this holds, that means there is

at least one element x ∈ K̃ which satisfies NO algebraic relation over K. Thus all
polynomials in x are linearly independent over K. To say that the transcendence
degree is exactly one means that if we select any other y ∈ K, then y is NOT
transcendental over K[x]. (Note: K ⊂ K[x] ⊂ K̃.) In particular, there must be some
polynomal P over K[x] such that P (y) = 0, otherwise the elements y, y2, . . . , yn, . . .
are all linearly independent (over K[x].) But such a polynomial simply a polynomial

in x and y. Thus, to say that K̃ has transcendence degree 1 means that any two
x, y ∈ K̃ ∖K satisfy some polynomial relation P (x, y) = 0.

Example. Elliptic curves. The field of meromorphic functions on an elliptic curve
is generated by P,P ′. The relation is cubic ...

5.2. Algebraic curves. A bit on (b) of the Great Synthesis.
Simplest view of algebraic curves.

P (x, y) = 0

a curve in C2. Eg. Elliptic curve:

y2 = x3 + ax2 + bx + c

Does not look compact!
Compactify by allowing x → ∞. How many points to add at infinity? In what

manner?
do naive Riem surface ,
function element method
EARLIER to understand
compactification: y =
√

P (x) .. -RM

Think of it as lying in CP 2 by adding another variable w and rewriting the eqn
as a homogeneous cubic:

y2w = x3 + ax2w + bxw2 + cw3

which reduced to the original upon setting w = 1.
Thus, the old ‘x,y’ are reinterpreted as affine coordinates x/w,y/w on CP 2.

‘Infinity’ becomes the line w = 0. How many intersections of our curve with infinity?
w = 0 Ô⇒ 0 = x3. So we intersect at infinity at one point [0,1,0]. To see local form
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of equation, focus on affine chart y = 1, so variables X = x/y,W = w/y. Dividing
the equation by y3 we get

W =X3 + aX2W + bXW 2 + cW 3.

In the new variables we have a non-singular cubic near W =X = 0. Check.
One point added at infinity. It is an inflection point - look how it touches its

tangent line W = 0 (the old line at infinity w = 0). This is important later in the
addition law which turns the elliptic curve into an abelian group. We can take the
point at infinity as the ‘identity’ precisely because it is an inflection point.

More generally, take ANY polynomial P (x, y) in two variables and look at the
curve P (x, y) = 0 in C2. Homogenize it to get a single homogeneous polynomial
Q(x, y,w) with P (x, y) = Q(x, y,1).

Problem: descibe the degree of Q in terms of the degrees of the monomials
occuring in P (x, y).

Answer: g = (d − 2)(d − 1)/2. (??) seems to work for d = 2,3
Yikes! Problem. Not every integer is a triangular number. There are genuses

which cannot be embedded smoothly as algebraic curves in CP 2. Eg, g = 4. For
these, we need more dimensions:

Σ ⊂ CPn

for some n. ...
What if we ‘try’ to embed a genus 4 surface holomorphically into CP 2? By the

above count, we cannot. When we try, we get singularities. These can be resolved
by various methods. The result can be embedded, as above, in a higher CPn.

Example of a singular curve and its resolution: Eg P (x, y) = x3 − y2. ...
For the simplest version of the problem, consider instead of a degree 3 polynomial

a degree 4 one,

y2 = x4 + ax3 + bx2 + cx + d
by the same process we are led to

w2y2 = x4 + awx3 + bw2x2 + cw3x + dw4

setting w = 0 yields 0 = x4. Again, the curve intersects the line at infinity
in a single point w = x = 0, so the point with homogeneous coordinates [0,1,0].
What does the curve look like near this point? Dividing by y4 and using X = w/y,
W = w/y yields

W 2 =X4 + aWX3 + bW 2X2 + cW 3X + dW 4

which is a singular curve at W = X = 0. It splits into two branches , the local
structure of which can be found by Puiseux (or Newton-Puiseux) expansions. ...

leads to singularity theory; CTC Wall etc..
How does the dictionary work, in the great synthesis, the dictionary relating (a),

(b), (c).

5.3. The dictionary. Given (c), a compact Riemann surface, consider the space
of all meromorphic functions on Σ. This is a field. It contains C, the constant
functions. Its transcendence degree is 1. It is generated by a finite set f1, . . . , fk
of meromorphic functions [Hard theorem?]. This brings us to (a). Saying it has
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transcendence degree 1, means, in particular, that there are algebraic relations
R(f1, . . . , fk) = 0 .. or maybe .. Rj(f1, fj) = 0??

The meromorphic functions f1, . . . fk can be chosen, by taking k large enough,
so that there is no point p ∈ Σ such that all fi satisfy fi(p) = 0. Also, there is no
point which is a common pole of all the fi. Then p↦ [f1(p), . . . , fk(p)] defines an
embedding into CPn where n = k − 1. Due to the relations from (a), it is algebraic.

Conversely, given an algebraic curve Σ ⊂ CPn, take any affine function Xi =
Xi/X1 or more generally P (X)/Q(X) where P,Q are homogeneous polynomials of
the same degree on Cn+1 and thus a rational function on CPn. Testrict it to the
curve to get a meromorphic function. (Hard?) theorem: all meromorphic functions
on Σ arise in this way.

Eg. The theorem for CP 1. Any meromorphic function on CP 1 is the quotient
of homogeneous polynomials on C2 having the same degree. In an affine chart this
looks like the quotient of two polynomials p(x)/q(x) (of any two degrees).

CPn. Defs. Affine charts. As projective Hilbert space for an n+1 level system.
Algebraic varieties. Curves. ...

6. A topological -analytic theorem

Recall degree between maps of compact surfaces.

Theorem 6.1. If f is a meromorphic function on Σ with exactly one simple pole,
then Σ is biholomorphic to CP 1.

Proof: Look at the degree near the pole. It is one, since , viewed as a map to
CP 1, f−1(∞) consists of a single point and in coordinates near infinity on CP 1 the
map is of the form ξ ↦ ξ. Now use that degree, counted using multiplicities, is
CONSTANT on any RS.

This proof culled from Donaldson, Cor. 1, p 45.
for degree see Farkas-Kra or Donaldson Prop 7, p44.

7. Integration formulae. The historical heart of the theory

Riemann surface theory grew in part out of trying to compute integrals such as

∫ (1−k2x2
)dx

√

(1−x2)(1−k2x2)

See Griffiths, Variations on a Theme of Abel, p. 327 for a guided exercise on
how arclength along an ellipse converts to this integral.

7.1. Warm up. To warm up, we will integrate ∫
1
−1

dx
√

1−x2
not by messing about

with trig substitutions a la Calc 1 or 2, but by viewing the Riemann surface of

y =
√

1 − x2 as a branched cover over the x plane, drawing branches and cuts, and
doing a path integral by residues.

Picture here !
We get a surprise or two. The Riemann surface is a sphere. The integrand is

dx/y and has simple poles at the north and south pole, ±i∞.

7.2. Indefinite integrals, multi-valued functions, and the universal cover.
What about the indefinite integral? i.e ∫

z
0

dx
√

1−x2
but with z ∈ C varying over the

complex plane. It is a ‘multi-valued function, Arcsin(z)..

Arcsin(z) = ∫
z

0

dx√
1 − x2
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We are taught to avoid mult-valued functions. Put a hex symbol over them. But
they come up in doing integrals all the time:

Log(z) = ∫
z

1

dz

z
We are taught to limit the domain of ‘Log’ or ‘Arcsin’ so that it becomes a well-

defined function, to use cuts or restrictions on z. In a way, Riemann’s approach
is the reverse: we enlarge the domain, by replacing the Riemann surface (eg the
punctured complex plane) by its universal cover.

Slogan: Multi-valued functions are regular functions on the universal
cover.

Indefinite integrals are multi-valued functions.
Let us move to the world of manifolds. Suppose that α ∈ Ω1(M) is any closed

real-valued one form on a manifold M . Fix a point z0 ∈M and define the “function”

I(z) = ∫
z

z0
α

For z close to z0 , varying about in a small disc, the function is well-defined and
smooth and dI = α. We can make the domain larger and insure that I remains
single valued as long as z varies in a simply connected region about z0. But, if we
move far way, uh-oh, we get a multi-valued function. However, if we integrate along
two different paths, c1, c2 connecting z0 to z we generally get two different answers.
Now consider the loop c = c−1

2 c1 based at z0. We have that the two different values
of I differ by the integral of α around the loop. This integral depends only on the
homotopy class [c] of the loop. [In fact, only on the homology class.] We could
write this as

I2(z) − I1(z) = per([c])(1)

per ∶ Γ = π1(M) → R;per([c]) = ∫
c
α(2)

It follows that Ĩ ∶ M̃ → R is well defined, where M̃ is the universal cover of M .
Write Γ = π1(M,z0) so that Γ acts on M̃ smoothly and M = M̃/Γ. Here is how we

can define Ĩ. Take the form α and pull it up to M̃ by the covering map π ∶ M̃ →M .
Set

Ĩ(z̃) = ∫
z̃

z̃0
α̃; α̃ = π∗α.

Since a point z̃ ∈ M̃ corresponds to a point z ∈M and a choice of homotopy classes
of paths from z0, z we have that Ĩ is our multi-valued function.

Moreover, the period mapping defines an additive homomorphism :

per ∶ Γ→ R

and we have

Ĩ(gz̃) = Ĩ(z̃) + per(g)
which is just another way to write the ‘multi-valued” relation (1).

All this works perfectly well for complex valued closed one-forms. Meromorphic
one-forms, also known as Abelian differentials, are such forms on Riemann surfaces.
What gives the whole theory added power in the world of Riemann surfaces is the
uniformization theorem. We basically know what the universal cover is going to
be! And Γ, the fundamental group, must sit inside Aut(M) as a discrete subgroup.
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Let’s return to the known examples as a reality check and then keep going. The
meromorphic one-form associated to Log is dz/z, the integrand central to residues.
Its domain is the punctured plane C ∖ {0} which we have seen is a cylinder. Its
universal cover is M = C.

For Arcsin the one-form is dx/y, integrated paths on the Riemann surface for

y =
√

1 − x2 , which is to say, x2+y2 = 1. [Use homogeneous coordinates, x2+y2 = w2

to better understand global structure] We have seen that, completed at infinity the
latter is CP 1 and the integrand has two poles , namely “±i∞.

7.3. Abelian differentials.

Definition 7.1. An Abelian differential is a meromorphic one-form on a Riemann
surface

Historically, they are divided into three types “the first kind”, the “second kind”
and the “third kind”.

First kind: no poles. A holomorphic differential.
Big theorem. The space of holomorphic differentials on a compact Riemann

surface is a finite dimensional complex vector space of dimension g, the genus of
the Riemann surface .

Second kind: no simple poles, only higher order poles. As far as integration is
concerned, we can ignore the poles and take the domain of the indefinite integral
to be the universal cover of Σ.

Third kind: some simple poles. We will need the residues around the poles and
the universal cover of the punctured Σ to understand the indefinite integral as a
global object.

EXAMPLES HERE?? or ...
SKIP TO Abel-Jacobi theory in its modern presentation ??
*******************************

8. Abel-Jacobi map! Periods!

9. Divisors, Line bundles, spaces of meromorphic functions

One of the big theorems in the subject is the Riemann-Roch theorem which gives
a count for the number (dimension) of the space of meromorphic functions having
a specific pole-and-zero structure. It has a series of generalizations all based on the
viewing of a meromorphic functions as a sections of a complex line bundle over Σ.

9.1. RR and the count. Exercise. p. 169 [4] Use RR to show that every RS is
realized as a ‘space curve”: i.e. holomorphically embeds in CP 3.

This is a realization theorem. Here is another, obtained by using perspective to
projection the previous realization ot CP 2.

Resolution of singularities and realization: Singularities of plane curves can be
resolved, eg. by repeated blow-up or by Puiseux expansion. Any singular algebraic
curve in CP 2 has a unique (up to bi-holomorphism) desingularization which is a
RS.

Take the above realization theorem suggested by Fisher. Project that realization
to CP 2. Result: Every RS is realized as a singular algebraic curve in CP 2.

9.2. Examples.
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