
Application of Riemann-Roch to transcendence degree.
I saw this in Miranda I think, but could not relocate it.

Proposition 0.1. If X is a compact Riemann surface then the transcendence
degree of its function field over the base field C is 1.

Recall transcendence degree.
Say K ⊂ L are fields. (We have in mind C ⊂ M(X).) We say that an element

α ∈ L is ‘transcendent’ over K if there is no nonzero polynomial with coefficients
in K satisfied by α. In this case the map K[x]→ L sending a polynomial p to p(α)
is injective and so we can identify K(α) ⊂ L with K[x]. And in this case we say
that L is transcendental over K. If every element of L is algebraic over K(α) ⊂ L,
then we say that “L has transcendence degree 1. Otherwise, we have that the
transcendence degree is greater than 1, and we can repeat the construction. There
would have to be another element α2 ∈ L, α2 /∈ K(α) such that when we consider
the inclusion of fields K(α) ⊂ L we have that α2 is transcendent over K(α). One
verifies without difficulty that this is true if and only if there is no non-trivial two-
variable polyomial p ∈ K[x, y] such that p(α1, α2) = 0, and in this case we say
that “α, α2 are algebraically independent over K”. Continuing in this way, one
can define the notion of a “transcendence basis for L over K”. The transcendence
degree of L over K is the number of elements in such a basis. In analogy with linear
algebra the transcendence degree is also equal to the maximal number of elements
of L which are algebraically independent over K.

Proof of Prop. The transcendence degree of M(X) over C is at least one:
any non-constant meromorphic function is transcendental over C.

To show that the transcendence degree is exactly one we must show that any two
non-trivial meromorphic functions on X satisfy a polynomial relation. So, let f, g
be two such polynomials, and suppose there is no polynomial relation among them.
Then the monomials f igj are all linearly independent. We will get a contradiction
to Riemann-Roch from this assertion.

Let (f) = Pf − Nf , (g) = Pg − Ng be the decomposition of the divisors of f
and g into positive and negative parts. Thus, for example, Nf is a sum over the
poles of f . Then (f) ≥ −Nf , (g) ≥ −Ng, Also −Nf ,−Ng ≥ −(Nf + Ng) so that
f, g ∈ L(D) if we set D = Nf + Ng > 0. Now the poles of f igj are contained
within the poles of f union the poles of g, and by looking at orders we see that
f igj ∈ L((i+ j)D). Now recall that

dim(L(nD)) = n`(D) + C

for n large.
On the other hand, if f, g are algebraically independent, we have seen that the

monomials f igj are linearly independent. How many of them are there with i+j ≤
n. Well, this is the dimension of the space of degree n polyonomials in two variables
x, y which is , by the ‘stars and bars” argument, equal to

(
n+2

2

)
= 1

2n
2+O(n). Thus

we have from independence that

dim(L(nD)) =
1
2
n2 +O(n)

and this contradiction implies that indeed, it is impossible that f and g are alge-
braically independent

QED
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Wow! That is a surprising proof!
*******
Stars and bars counting aside...
Degree 5 polynomials in 2 variables. Dimension? Basis: monomials xkym, k +

m ≤ 5. How many? Counting xy3 = ∗| ∗ ∗ ∗ |∗. x2y2 = ∗ ∗ | ∗ ∗|∗ etc. We have
7 = 5 + 2 slots. In these slots , put two bars. Fill the rest with stars. The dividing
bars tell us then how to convert the starts to a monomial. There are

(
5+2
2

)
such

monomials.
dim(V (d;n) = space of polynomials of degree d in n variables is

(
d+n

n

)
.


