Application of Riemann-Roch to transcendence degree.
I saw this in Miranda I think, but could not relocate it.
Proposition 0.1. If X is a compact Riemann surface then the transcendence degree of its function field over the base field \mathbb{C} is 1 .

Recall transcendence degree.
Say $K \subset L$ are fields. (We have in mind $\mathbb{C} \subset \mathcal{M}(X)$.) We say that an element $\alpha \in L$ is 'transcendent' over K if there is no nonzero polynomial with coefficients in K satisfied by α. In this case the map $K[x] \rightarrow L$ sending a polynomial p to $p(\alpha)$ is injective and so we can identify $K(\alpha) \subset L$ with $K[x]$. And in this case we say that L is transcendental over K. If every element of L is algebraic over $K(\alpha) \subset L$, then we say that " L has transcendence degree 1 . Otherwise, we have that the transcendence degree is greater than 1 , and we can repeat the construction. There would have to be another element $\alpha_{2} \in L, \alpha_{2} \notin K(\alpha)$ such that when we consider the inclusion of fields $K(\alpha) \subset L$ we have that α_{2} is transcendent over $K(\alpha)$. One verifies without difficulty that this is true if and only if there is no non-trivial twovariable polyomial $p \in K[x, y]$ such that $p\left(\alpha_{1}, \alpha_{2}\right)=0$, and in this case we say that " α, α_{2} are algebraically independent over K ". Continuing in this way, one can define the notion of a "transcendence basis for L over K ". The transcendence degree of L over K is the number of elements in such a basis. In analogy with linear algebra the transcendence degree is also equal to the maximal number of elements of L which are algebraically independent over K.

Proof of Prop. The transcendence degree of $\mathcal{M}(X)$ over \mathbb{C} is at least one: any non-constant meromorphic function is transcendental over \mathbb{C}.

To show that the transcendence degree is exactly one we must show that any two non-trivial meromorphic functions on X satisfy a polynomial relation. So, let f, g be two such polynomials, and suppose there is no polynomial relation among them. Then the monomials $f^{i} g^{j}$ are all linearly independent. We will get a contradiction to Riemann-Roch from this assertion.

Let $(f)=P_{f}-N_{f},(g)=P_{g}-N_{g}$ be the decomposition of the divisors of f and g into positive and negative parts. Thus, for example, N_{f} is a sum over the poles of f. Then $(f) \geq-N_{f},(g) \geq-N_{g}$, Also $-N_{f},-N_{g} \geq-\left(N_{f}+N_{g}\right)$ so that $f, g \in L(D)$ if we set $D=N_{f}+N_{g}>0$. Now the poles of $f^{i} g^{j}$ are contained within the poles of f union the poles of g, and by looking at orders we see that $f^{i} g^{j} \in L((i+j) D)$. Now recall that

$$
\operatorname{dim}(L(n D))=n \ell(D)+C
$$

for n large.
On the other hand, if f, g are algebraically independent, we have seen that the monomials $f^{i} g^{j}$ are linearly independent. How many of them are there with $i+j \leq$ n. Well, this is the dimension of the space of degree n polyonomials in two variables x, y which is, by the 'stars and bars" argument, equal to $\binom{n+2}{2}=\frac{1}{2} n^{2}+O(n)$. Thus we have from independence that

$$
\operatorname{dim}(L(n D))=\frac{1}{2} n^{2}+O(n)
$$

and this contradiction implies that indeed, it is impossible that f and g are algebraically independent

QED

Wow! That is a surprising proof!

Stars and bars counting aside...
Degree 5 polynomials in 2 variables. Dimension? Basis: monomials $x^{k} y^{m}, k+$ $m \leq 5$. How many? Counting $x y^{3}=*|* * *| *$. $x^{2} y^{2}=* *|* *| *$ etc. We have $7=5+2$ slots. In these slots, put two bars. Fill the rest with stars. The dividing bars tell us then how to convert the starts to a monomial. There are $\binom{5+2}{2}$ such monomials.
$\operatorname{dim}\left(V(d ; n)=\right.$ space of polynomials of degree d in n variables is $\binom{d+n}{n}$.

