
(a) Projection from a point P

We work out the geometry of the map [X,Y, Z] → [X, Y ] and how it yields a
map from a curve C ⊂ CP2 to the projective line.

Begin synthetically. In the projective plane P2 there is a unique line connecting
any two distinct points, and there is a unique point shared by any two distinct
lines 1. Fix a point P ∈ P2. The space of all lines passing through P forms
a projective line, P1(P ) ∼= P1, as we show momentarily. Take a point Q 6= P .
Connect Q to P by the guaranteed unique line ~PQ ∈ P1(P ). In this way we get a
map P2 \{P} → P1(P ) = P1. We follow the algebraic geometry tradition and write
this map as

P2− → P1(P ) (∗),
This map is the projection from P . the dotted arrow here, and throughout algebraic
geometry, indicating that the domain of the map is not the entirety of what it
appears to be, ie. here it is not all of P2.

To visualize the map, it helps to choose an auxiliary line `0 ⊂ P2 not passing
through P . Since every line ` ∈ P1(P ) intersects `0 in a unique point, we have a a
bijection P1(P ) ∼= `0, so by composition, projection from P induces a map

P2− → `0 (∗)
as indicated in the figure.

Exercise 0.1. Use homogeneous coordinates [X, Y, Z] for P2. Suppose that P =
[0, 0, 1] and that the line `0 = {Z = 0}. Show that the projection (*) is given in
homogeneous coordinates by [X, Y, Z] 7→ [X,Y, 0]

Exercise 0.2. Show that the above map, in the right affine coordinates on domain
and range, is given by (x, y) 7→ x/y.

Exercise 0.3. Show that the linear projection (x, y)→ x is achieved as the affine
coordinate representation of a projection from a well-chose point P onto a well-
chose line `0. Find the point P and line `.

Answer to exercise 0.3. The choice of affine coordinates tells us to represent
points in P2 as [x, y, 1] Take P = [0, 1, 0] so as to ‘project out’ y. We want the
projection to be [x, y, 1] 7→ [x, 1]. Think of [x, 1] = [x, 0, 1]. Takin `0 = {Y = 0}
does the trick.

1These incidence relations, plus some axiomatization of Desargue’s theorem forms the entirety
of the axioms of projective geometry.
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(a) Placing the viewpoint on the conic yields an isomorphism with the line.

Restrict the projection from P to a subset Σ ⊂ P2 disjoint from P . We get a
map

Σ→ P1.

We are interested in the case in which Σ is an algebraic curve, meaning the zero
locus of a homogeneous polynomial F (X, Y, Z): Σ = {F = 0} := V (F ).

Exercise 0.4. Let the degree of the homogeneous polynomial F be d. Let ` ⊂ P2 be
a line. If ` is not contained in Σ = V (F ) then ` ∩ Σ consists of d or fewer points.

Hint. Write the restriction of F to ` in terms of an affine parameterization of `.
Remark: The Bertini theorems are algebraic-geometric versions of the Sard

theorem which assert that for algebraically closed fields such as C, we have that for
almost every line ` 2, the number of points of the intersection `∩Σ is exactly d, at
least in our case where the underlying field is C. Thus, the restriction map yields
a degree d map Σ→ P1.

Exercise 0.5. In case the underlying field is C, and Σ ⊂ CP2 is a smooth algebraic
curve, show that the critical values of the map Σ → P1 = P1(P ) are precisely the
tangent lines to Σ which pass through P .

We come to the guts of our discussion.

Proposition 0.6. If Σ is a nondegenerate conic, and P ∈ Σ, then the projection
from P defines an isomorphism of Riemann surface Σ → P1(P ). (See figure (a)
above.)

Proof. Choose homogeneous coordinates so that in the associated affine coor-
dinates the conic is the ‘unit circle’ x2 + y2 = 1 and the point P is the ‘north
pole’ (x, y) = (0, 1). (Compare Miranda p. 57. Note all nondegenerate conics are
isomorphic since all nondegenerate quadratic forms on C3 are isomorphic.) Take

2in algebraic geometry, ‘almost everywhere’ becomes replaced, almost everywhere, by “outside
of a Zariski closed set” which means off the zero locus of some set of polynomials
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the line `0 which we project onto to be the line y = −1 in these coordinates, the
line tangent to the circle at the ‘south pole’ (0,−1). Then the projection of the
conic from P to `0 in these coordinates is the standard stereographic projection
(perhaps scaled by 2, depending on how you learned stereo projection), namely:
(x, y) 7→ 2x/(1 − y). Although the map is not formally defined at P its limit is,
letting y → 1, and by so extending the map P ∈ Σ is sent to the point at infinity
on the line.

Remark: The full story of this limit procedure involves the construction of a new
algebraic variety, the blow-up of CP2 at the point P .

1. Linear algebraic underpinnings of the Projective Plane

Begin with a 3-dimensional vector space V over a field K. Write P(V ) ∼= KP2 for
the corresponding projective plane/ Points of this projective plane are 1-dimensional
subspaces of V. If v ∈ V, v 6= 0 we write [v] = span(v) ∈ P(V) for the corresponding
point of P(V). Lines in P(V ) correspond to 2-dimensional subspaces S ⊂ V. Write
` = `S for the line represented by S. Points of [v] ∈ `S correspond to 1-dimensional
subspaces of Kv ⊂ S, so that `S = P(S) ∼= P1.

A 2-dimensional subspace S is defined by the vanishing of a nonzero linear func-
tional f ∈ V∗, and f is uniquely defined by S, up to scale. Thus lines in P(V)
are naturally in bijection with points of [f ] ∈ P(V∗). The incidence relation “point
P = [v] lies on line ` = {f = 0} is the duality relation f(v) = 0.

Any linear isomorphism L : V→ V maps lines in V to lines in V and so induces
a “projective isomorphism” P(V) → P(V). The group of all such transformations
is the projective linear group PGL(V) ∼= Gl(V)/ nonzero scalar multiples of Id..
When the field is C this group is precisely the group of biholomorphisms of CP2.
An invertible linear transformation of V also maps two-planes to two-planes so
defines a map P(V∗) → P(V∗). This joint action of PGL(3) on P(V) × P(V∗)
preserves the incidence relation.


