
1. Jacobian; canonical embeddings

X is a compact Riemann surface of genus g ≥ 1. The space H0(K) = Ω(1,0)

of holomorphic differentials on X has dimension g. Choose a basis ω1, . . . , ωg of
holomorphic differentials. View the ωi as sections of the complex line bundle K =
T (1,0)X.

Theorem 1.1. The ωi can never simultaneously vanish: for any p ∈ X there is an
i, i = 1 . . . , g such that ωi(p) 6= 0

It follows that

(1.1) p 7→ [ω1(p), ω2(p), . . . , ωg(p)]

is a well-defined map ΦK : X → CPg−1. We call this map the canonical embedding.
If we start with a different basis ω̃i, . . . , ω̃g for the space of holomorphic one-forms,
we would have another canonical embedding, Φ̃K , related to the old ΦK by Φ̃K =
L ◦ΦK where L : CPg−1 → CPg−1 is the projective transformation induced by the
linear map L̃ : Cg → Cg corresponding to the change of basis matrix.

Theorem 1.2. For g > 2 the canonical embedding is either an embedding of X
into CPg−1 or it maps X in a 2 : 1 fashion onto a CP1 embedded in CPg−1.

Remark The exception X of the theorem are the hyperelliptic Riemann surface
. These can be represented in an affine chart by y2 = p(x).

1.1. The terminology of base-point free linear systems. Recall L(D).
Recall L(D) ∼= Γ(LD) = H0(LD).

Definition 1.1. A linear system on X is a linear subspace V ⊂ L(D) for some
divisor D on X.

The linear system V ⊂ L(D) is called “base-point free” if there is no point p ∈ X
such that for all s ∈ V we have s(p) = 0.

A base-point free linear system defines a a canonical map

ΦV : X → P(V ∗)

as follows. For p ∈ X we have the map

evp : V → Lp evp(s) = s(p).

The base-point free assumption is that evp is onto for all p, thus ev∗p : L∗p → V ∗

has one-dimensional image. The canonical embedding associated to V then sends
x to [ev∗xLx] ∈ P(V ∗). It is a holomorphic map. A basis si for V defines linear
coordinates on V ∗. Consequently, the coordinate representation of ΦV is

p 7→ [s1(p), . . . , sk(p)].

In this terminology, theorem ?? asserts that the complete linear system K is
base point free. And the canonical embedding is the associated ΦK .

Proof of theorem 1.1. By Riemann-Roch. Suppose there is such a point p.
Then every holomorphic one-form, being a linear combination of the ωi, vanishes
at p. It follows that L(K − p) = L(K) so `(K − p) = g = `(K). But since
g > 0 we have L(p) = C (no constant meromorphic functions with a single simple
pole). Thus `(p) = 1. Also deg(K − p) = deg(K) − 1 = 2g − 3. Riemann-Roch
says `(K − p) − `(p) = deg(K − p) − g + 1 which implies that `(K − p) = g − 1
contradicting `(K) = `(K − p).
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2. Jacobian

Now view the ωi as integrands. Integrate the homogeneous coordinates ωi of the
canonical embedding ΦK to get a g-vector of indefinite integrals

(
∫ x

ω1, . . . ,

∫ x

ωg).

Locally, each component is a holomorphic function on X, but globally it is not a
function, but rather a multi-valued function, for if we let x vary around a closed
cycle c in X we will find that

∫ x
ωi 7→

∫ x
ωi +

∫
c
ωi. We call the integrals

∫
c
ωi ‘pe-

riods’. By appropriately dividing out by periods, the integration map will become
well-defined.

Outline: We first make this into a multi-valued function on X by fixing a base point p0.

Then we make it into an honest-to-god function by dividing out by the periods. Then we

make it into a function on divisors by linearity. Then we show it provides an isomorphism

Pic0(X) to a torus.

Fix a p0 ∈ X as base point. Consider the vector function

p 7→ F̃ (p) := (
∫ p

p0

ω1, . . . ,

∫ p

p0

ωg)

For p close to p0 the integrals are well-defined holomorphic functions of p: we join
p to p0 by a path lying in a small contractible neighborhood of p0. But as p moves
away, we have to make a choice of path joining p0 to p. The difference of two
such paths is closed: that is, an element of H1(X,Z). We call the integrals

∫
c
ωi

the periods of the differentials. Because dωi = 0 and ∂c = 0 these integrals are
well-defined, independent of the choice of curve used to represent a homology class
c. Any vector in Cg which can be written as λ = (

∫
c
ω1, . . . ,

∫
c
ωg) we say is in the

period lattice. Write Λ(X) = Λ(X; {ωi}) for the collection of all such vectors.

Proposition 2.1. The collection of vectors Λ(X) forms a rank 2g lattice in Cg.

The multi-valued function F̃ yields a well defined once we mod out by this lattice:

F = F̃ (modΛ(X)) : X → Cg/Λ(X).

Exercise 2.2. Verify that changing the basis ωi changes the lattice by the cor-
responding change of basis matrix in such a way as to yield a holomorphically
equivalent map of X into an equivalent torus.

Exercise 2.3. Verify that changing the base point p0 of integration changes F by
a translation:

(
∫ p

p1

ω1, . . . ,

∫ p

p1

ωg = ~d+ (
∫ p

p0

ω1, . . . ,

∫ p

p0

ωg) mod Λ(X).

with ~d ∈ Cg/Λ(X) independent of p.

Definition 2.1. We write Jac(X) for the torus Cg/Λ(X).

Now, let D be any divisor; D = Σnapa. Set
∫D
p0
ωi =

∑
na

∫ pa

p0
ωi This multi-

valued function has the same periods as before and so induces the ith component
of a well-defined map

Φ : Div(X)→ Jac(X); Φ(D) = (
∫ D

p0

ω1, . . . ,

∫ D

p0

ωg) mod Λ(X).
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Lemma 2.4. If D = (f) is a principal divisor then

Φ(D) = 0 mod Λ(X).

Abel’s theorem is the converse of this lemma:

Theorem 2.5 (Abel’s theorem). If D is a divisor with Φ(D) = 0 and deg(D) = 0
then D is a principal divisor.

This theorem asserts that the integration map Φ induces an injective map Φ :
Pic0(X)→ Cg/Λ(X). Jacobi’s map asserts the map is onto.

Theorem 2.6 (Jacobi’s theorem). The integration map D 7→ Φ(D) from degree
zero divisors to Cg/Λ(X) is onto: every element of this torus is the integral of some
degree zero divisor.

Together, the Abel and Jacobi theorem yield

Theorem 2.7.
(Φ, deg) : Pic(X)→ Jac(X)× Z

is an isomorphism of Abelian groups, and gives Pic(X) the structure of an algebraic
variety.

Proofs: Following Donaldson. On Thurs Feb 21, 2013: Will fix up computation
on the integral of that ∂̄f

f ∧ θ which led to 2πi
∫
γ
θ.

2.1. Canonical embedding as differential of Abel-Jacobi map. Map X into
Pic(X) by sending p to the divisor {p}. Then the Abel-Jacobi map becomes our
original integration map:

F (p) = Φ(p).
Jac(X) is a torus – an Abelian Lie group – and as such has a canonical translation
of tangent spaces back to the origin 0. Differentiating F with respect to p and
translating back to the origin, we get a family of lines [dΦ(p))/dp] ⊂ T0Jac = Cg
depending on p. By the fundamental theorem of calculus, this line is the one defined
by the canonical embedding.

We can add points together and compose to get maps

Φ(d) : SdX → Pic(X)

where
Sd(X) = (X ×X × . . .×X)/Sd

is the d-fold symmetric product of X by itself. The symbol /Sd means divide
out by the action of the symmetric group acting by interchaning indices of points:
(x1, . . . , xd) 7→ (xσ(1), . . . , xσ(d)). Thus a point of Sd(X) is an unordered collection
of d points p1, . . . , pd ∈ X with multiplicity allowed. We can send such a collection
to its sum: p1 + p2 + . . . pd ∈ Pic(X). Then compose with the Abel-Jacobi map to
give the map Φ(d) above: s a map

Φ(d) : Sd(X)→ Jac(X) {p1, . . . , pd} 7→ Φ(Σpa).

Proposition 2.8. The symmetric product Sd(X) has a natural structure of a com-
plex manifold of dimension d.

The maps Φd are holomorphic. For d ≥ g the map Φ(d) are onto.
The fibers of Φ(d) are projective spaces.
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For d > 2g − 2 the map Φ(d) is a fibration, fibers all isomorphic to a projective
space of dimension d− g, this being the dimension of a projective space P(V ) where
V ∼= H0(D) , D any divisor of degree d, according to Riemann-Roch.

3. Topological perspective

LetX be a smooth compact manifold. We can form the Picard varietyH1(X,S1) =
H1(X,R)/H1(X,Z) and the Jacobian H1(X,S1) = H1(X,R)/H1(X,Z). These are
dual torii of dimension b1(X). The latter torus can be viewed as Hom(π1(X), S1)
and as such forms the moduli space of flat complex line bundles (or circle bundles)
over X.

Choose a basis ω1 . . . , ωb1 of closed one-forms for H1(X,R). The integration
map

Φ(d) : Symd(X)→ Jac(X)
continues to make sense.

In general, there is no natural isomorphism H1 ∼= H1 so these tori are different.
In the case of an oriented surface, the intersection pairing (or Poincare duality)
yields a natural isomorphism between the two torii.
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... traditional integrals and group laws following Mumford.
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Flat line bundles, following Atiyah ... and
OVERFLOW:
by sending A line bundle L → X is called base point free very ample if (a) its

sections separate points: meaning for any distinct pair xy ∈ X there is a section
with s(x) = 0 and s(y) 6= 0.

A very ample line bundle induces an embeddingX → P(H0(L)) by x 7→ [s1(x), . . . , sd(x)]
where the sections si are a basis for H0(L). Most line bundles L over X are ample.
[Not all: hyperelliptic curves..]

Theorem 5.1. For generic X, the canonical bundle K is an ample line bundle, so
that the canonical embedding is indeed an embedding X → Pg−1.


