
Mumford (Tata Lectures on Theta, II. pp: 3.12-3.13) describes a slick trick to
put coordinates at infinity on the standard hyperelliptic curve. We skated the issue
earlier. Here I would like to understand this completion. We expressed the surface
as w2 = p(z) where all the roots of p are simple. We will switch to Mumford’s
notation so s replaces w and t replaces z and f(t) replaces p(z).

The hyperelliptic curve is the subvariety of C2 defined by

(1) s2 = f(t)

with

f(t) = (t− a1)(t− a2) . . . (t− aN )

a degree N polynomial whose roots ai are all distinct. Define the integer k by

N =

{
2k forN even

N = 2k − 1 forN odd

Then the genus of C1 is

g = k − 1.

for the hyperelliptic curve.
We showed on the first day of class that the ‘no multiple roots conditions”

implies that C1 is non-singular - i.e. a RS, when viewed as a submanifold of C2.
The function t forms a coordinate at points for which s 6= 0. In a neighborhood of
poitns with s = 0 the function s restricted to C1 forms a holomorphic coordinate.
The issue is how to smoothly compactify C1.

I have skated over the issue - really avoiding it.
Here’s the slick change of variables I learned from Mumford. Make the change

of variables:

(2) t̃ =
1

t

(3) s̃ =
s

tk

Note that t̃ = 0 corresponds to t =∞.
The t change, eq (2) is the standard change to bring infinity to the origin,

forming coordinates centered at infinty. The s change is mysterious at first, but we
can derive it from the t change. First, partially re-express f(t) in terms of t̃:

f(t) = Πi(t− ai)(4)

= Πi{t(1− ai/t)}(5)

= tNΠi{(1− ait̃)}(6)

Now split up N as either 2k or 2k − 1. In the even case we see that the equation
(1) for the curve is equivalent to

(
s

tk
)2 = Πi{(1− ait̃)

while in the odd case it becomes

(
s

tk
)2 =

1

t
Πi{(1− ait̃)

Thus, with s̃ defined as in eq (3) our curve becomes

(s̃)2 = Π(1− ait̃), if N even
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and

(s̃)2 = t̃Π(1− ait̃), if N even.

Added points at infinty. To understand the points we’ve added at infinity by
this process, simply set t̃ = 0 and solve. In the even case we get s̃2 = 1, so we have
added two points at infinity, s̃, t̃ = (±1, 0). The curve continues to be 2:1 branched
over infinity. In the odd case the equation reads s̃2 = 0: t̃ = 0 or t =∞ is a branch
point for the curve– with (s, t) 7→ t viewed as a map from the curve to the Riemann
sphere.

Notation We will call this compactified curve, with points at infinity added the
hyper-elliptic curve and denote it by C. When we write C1 ⊂ C we mean the affine
part sitting inside C2, so C minus its one or two points at infinity.

0.1. A basis for the Abelian differentials. An important theorem asserts that
if g ≥ 1 then the space of global holomorphic one-forms, historically known as
“Abelian differentials ” has complex dimension g. One nice thing about hyperel-
liptic curves is we can write a basis down by hand.

Claim

ω0 =
dt

s
, ω1 =

tdt

s
, . . . , ωk−2 =

tk−2dt

s

form k − 1 = g linearly independent globally holomorphic one-forms on C.
That they are linearly independent is clear, I think. If it is not, try to prove it,

by imagining how it could be that Σciωi = 0 identically in some neighborhood .
That none of these forms has poles is less clear. It sure looks like 1/s has poles

when s = 0. But s = 0 ⇐⇒ f(t) = 0. We have, from the defining equation,
that 2sds = f ′(t)dt or dt

s = 2ds
f ′(t) . Now, at points where f(t) = 0 we must use s

as a coordinate instead of t. Also f ′(t) 6= 0 when f(t) = 0, since we’ve assumed
no multiple roots. Re-expressed then our one-form is 2ds

f ′(t) which is perfectly well

defined and has no pole. We have, over points with t 6= ∞ both s and t are
holomorphic functions on C, and that tk dt

s are also all holomorphic functions on
the affine part C1 ⊂ C.

It remains to verify that none of these forms have poles at infinity. We switch
to the other chart. Thus t = 1

t̃
so

dt = −dt̃
t̃2

while

s = tks̃ or s =
1

t̃k
s̃

It follows that, in the charts at infinity we have

dt

s
= −t̃k−2 dt̃

s̃
.

Let us do the case of N even. Then there are two points at ∞ corresponding to
the two roots s̃ = ±1 to (s̃)2 = Π(1−ait̃). Neither is zero, so that dt̃/s̃ has no pole
at either. Since t` = t̃−` we have that, expressed near infinity:

ω` = −t̃k−`−2 dt̃
s̃
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which has no pole at t̃ = 0 as long as k − ` − 2 ≥ 0 which is to say, for ` =
0, 1, 2, . . . , k−2. We have shown that all these ω` are holomorphic over the entirety
of C.

Exercise Do the case N = 2k − 1 is odd.
Due to the dimension count and the claim we can state the result as follows: An

altervative way to state the claim is that any holomorphic differential (as opposed

to a meromorphic differential) on the hyperelliptic curve is of the form ω = R(t)dt
s

where R(t) is a polynomial of degree at most k − 2. Note k − 2 = g − 1 and the
space of such polynomials has dimension g.

Where’d this change of variables at infinity come from? What’s it
mean? Mumford’s magical change of coordinates smelled of weighted projective
space. The weighted projective space denoted P(1, 1, k) is the quotient of C3 \ {0}
by the action of C∗ which sends (X,Y, Z) to (λX, λY, λkZ). Indeed if we rethink
of f(t) as a homogeneous polynomial by setting f(t1, t2) = Πi(t1 − ait2) then

s2 = f(t1, t2)

is weighted homogeneous of degree 2k in P(1, 1, k). C1 is obtained by setting t2 = 1
while C2 is obtained by setting t1 = 1. To work out the change of variables set
[X,Y, Z] = [t, 1, s] = [1, t̃, s̃] where, as per usual projective space [X,Y, Z] denotes
the C∗ orbit through X,Y, Z. The C1 part is thus in the chart Y 6= 0 while
the C2 part is in the chart X 6= 0. We first work out t, s. We must have that
t = X/Y, s = Z/Y k we need as coordiantes C∗ invariant functions. Similarly we see
that t̃ = Y/Z, s̃ = Z/Xk. So t̃ = 1/t while s̃ = Z/(Y k)(Xk/Y k) = s/tk, explaining
Mumford’s magical change of coordinates. I found this trick by stumbling about
the web, after googling “hyperelliptic curve in weighted homogeneous ” and getting
the following reference of Miles Reid from the early 1990s: https://homepages.

warwick.ac.uk/~masda/surf/more/grad.pdf The example is mostly worked out
on p. 2. There he writes: “. Note that it is not a wise move to take the projective
closure of C1 in straight CP2 - it leads to a complicated singularity at infinity, and
general confusion.”

Notes on impossibility of embedding in straight CP2. This unwise move
is exactly what most texts seem to do when dealing with the points at infinity
on the hyperelliptic curve! The standard trick is to homogenize the polynomial
thus defining a compact (irreducible) curve in CP2 containing C1 as its affine part.
See Brieskorn-Knorrer, top p. 620, example (5). This yields a (rather deep and
non-generic!) singularity at the added point at infinity.

Indeed, there is NO WAY to smoothly embed ‘most hyperelliptic curves in CP2.
A smooth curve in CP2 is defined as the zero locus of some homogeneous polynomial
in three variables. If d is the degree of the variety then

g =
(d− 1)(d− 2)
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This is Lemma 4, p. 611 of Breiskhorn-Knorrer and follows fairly simply from the
Riemann-Hurwitz. See what B-K call ‘Theorem 5’ a bit after lemma 4, or see the
proof of lemma 4 there. Kirwan is another good source for this.


