
A plane curve C here means the subset of the projective plane CP2 given as the
vanishing of a homogeneous polynomial in 3 variables:

C := {[X,Y, Z] ∈ CP2 : P (X,Y, Z) = 0}

Write C̃ := {(X,Y, Z) ∈ C3 : P (X,Y, Z) = 0, (X,Y, Z) 6= (0, 0, 0)} ⊂ C3 \ {0} for
this same solution set, viewed in C3 so that

C = π(C̃).

Here [X,Y, Z] are homogeneous coordinates on CP2 so that we can write

π(X,Y, Z) = [X,Y, Z]

for the projection π : C3 \ {0} → CP2. We say C is smooth, or ‘non-singular’ if 0
is a regular value for P , viewed as a map P : C3 \ {0} → C. Then the holomorphic

implicit function theorem tells us that C̃ and C are holomorphic manifolds, with
C a Riemann surface. Remember what it means for 0 to be a regular value here:
dP (X,Y, Z) := PXdX + PY dY + PZdZ 6= 0 as a one-form on C3 \ 0 whenever
P (X,Y, Z) = 0 and (X,Y, Z) 6= (0, 0, 0).

Theorem 0.1 (Degree-Genus formula). If P has degree d then the smooth curve

C = {P = 0} has genus g =
(
d−1
2

)
= (d−1)(d−2)

2 .

The space Ω(1,0)(C) of all holomorphic one-forms on C consists of the one-forms

(1) ωQ := Qω

on C̃ pushed down to C, where Q is any homogeneous of degree d − 3 polynomial
and ω is any one of :

ω1 =
Y dZ − ZdY

PX
, ω2 =

ZdX −XdZ
PY

, ω3 =
XdY − Y dX

PZ

All three one-forms are equal along C̃ and annihilate the ‘vertical distribution’
ker(dπ).

As an important corollary we find that not all genuses -hence not all topological
curves - can be realized as smooth planar curves for the simple reason that not all
integers g have the form

(
d−1
2

)
. Indeed g = 2 cannot be so represented!

Let us see how the representation of one-forms, equation (1) arises. A one-form
on C3 \ {0} pushes down to CP2 if and only if it is “basic” and ‘invariant’. Basic
means that the kernel of dπ lies in the kernel of α. Invariant means invariant
under scaling τ∗λα = α where τλ(X,Y, Z) = (λX, λY, λZ) for λ ∈ C∗. The kernel
of dπ at (X,Y, Z) is the C-span of (X,Y, Z). The one-forms Y dZ − ZdY,ZdX −
XdZ,XdY −Y dX all kill this kernel and they span the space of of one-forms which
kill the kernel. (But they are not a basis! There are too many of them!) Now these
forms are homogeneous of degree 2 with respect to scaling:

τ∗λ(Y dZ − ZdY ) = λ2(Y dZ − ZdY ), etc.

For a form to be invariant it must be homogeneous of degree 0 with respect to
scaling. The derivatives PY etc are homogeneous of degree d−1 hence the forms ωi
are homogeneous of degree 2−(d−1) = 3−d. Multiplying them by a homogeneous
polynomial Q(X,Y, Z)of degree d− 3 yields a form which is invariant.

Remark. This business about ‘basic’ plus ‘invariant’ implies projectable holds
for any principal G-bundle. In our case G = C∗.
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To see that the forms are all equal on C̃ we find a complex basis for TC̃. Now the
tangent space TC̃ is the kernel of dP = PXdX+PY dY +PZdZ. One element of the
basis is (X,Y, Z) which spans ker(dπ). Indeed dP (X,Y, Z)(X ∂

∂X +Y ∂
∂Y +Z ∂

∂Z ) =
XPX + Y PY +ZPZ = (d)P by one of Euler’s identities. On this element all of the

ωi are zero, hence agree. For the other basis element of TC̃ we can take any one
of: EZ = (PY ,−PX , 0) - by which we mean

EZ := PY
∂

∂X
− PX

∂

∂Y

or the obvious cyclic permutations thereof (0, PZ ,−PY ) or (PZ , 0,−PX). Lets eval-
uate our three one forms

ω1 =
Y dZ − ZdY

PX
, ω2 =

ZdX −XdZ
PY

, ω3 =
XdY − Y dX

PZ

on EZ . We have that ω3(EZ) = −XPX−Y PY

PZ
. But by Euler’s identity , on C we

have that −XPX − Y PY = ZPZ so that ω3(EZ) = Z. And ω2(EZ) = ZPY

PY
= Z.

Finally ω1(EZ) = −Z(−PX)
PX

= Z. All three one-forms are equal along a dense open

subset of C̃, hence are equal on all of C̃.
We have established that all forms of the given type of equation (1) define mero-

morphic one -forms on C̃. They are in fact holomorphic, i.e. have no poles because,
at any given point one of PX , PY or PZ is non-zero and we can choose the corre-
sponding representative ωi accordingly.

Genus computation. A. We count `(K), the dimension of the space of
holomorphic forms on C, which is the vector space of all forms given by equation
(1). This space is in linear bijection with the homogeneous degree d−3 polynomials
Q in 3 variables. so need the dimension of this space. We set N = d − 3 and
proceed. Dehomogenization (setting Z = 1) defines a linear isomorphism between
the space of all degree N homogeneous polynomials in 3 variables and the space of
all polynomials of degree N or less in 2 variables. We can count the dimension of
the latter space by arranging the monomials xiyj in a triangular pattern:

degree N : xN , xN−1y, xN−2y2, . . . , yN

degree N − 1 : xN−1, xN−2y, xN−2y2, . . . , yN−1

· · ·

degree 1 : x, y

degree0 : 1.

We see the space of polynomials which are homogeneous of a given degree m in
two variables has dimension m + 1, and, summing up, those of degree N form a
space of dimension N + 1, those of degree N − 1 a space of degree N so that our
space of polynomials in x and y of degree less than or equal to N has dimension
(N + 1) + N + (N − 1) + . . . + 2 + 1 =

(
N+2
2

)
. Now return to N = d − 3 so that

N + 2 = d− 1 to get that the space of holomorphic forms has dimension g =
(
d−1
2

)
.
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As an independent check, we can compute the degree of a nice ωQ. Take for
Q = `(X,Y, Z)d−3 where ` is any linear function. For example ` = X would
do. By the simplest form of Bezout, C ∩ {` = 0} consists of d points, when
counted with multiplicity. By wiggling ` we can insure that these points are all
distinct. Thus ωQ vanishes at precisely d points. Each such point p is a zero
of multiplicity d − 3 for ωQ, since ωQ = `d−3ωi. So, deg(ωQ) = d(d − 3). Now

d(d− 3) = d2 − 3d = (d2 − 3d+ 2)− 2 = 2g − 2 where g = 1
2 (d2 − 3d+ 2) =

(
d−1
2

)
.


