1. .

We continue with X compact Riemann surface and D a divisor on X.

Theorem 1.1.

- 1) $\operatorname{deg}(D)<0 \Longrightarrow L(D)=0$
- 2) $L(D-p) \subset L(D)$
- 3) $\operatorname{dim}(L(D) / L(D-p))$ is either 0 or 1

Corollary 1.2. $\ell(D) \leq \operatorname{deg}(D)+1$
Proof of Theorem (1): Suppose that $\operatorname{deg}(D)<0$ and $f \in L(D)$ is a meromorphic function not identically zero. Then $\operatorname{div}(f) \geq-D$. Observe that the degree mapping on divisors is order preserving: $E \geq F \Longrightarrow \operatorname{deg}(E) \geq \operatorname{deg}(F)$. Therefore $\operatorname{deg}(\operatorname{div}(f) \geq \operatorname{deg}(D)>0$, contradicting the fact $\operatorname{div}(f)=0$. Thus $f=0$.
(2). Say $f \in L(D-p)$. Then $\operatorname{div}(f) \geq-(D-p)=p-D>-D$. So $\operatorname{div}(f) \geq-D$ and $f \in L(D)$.
(3) For simplicity, we begin with the case where $D(p)=0$. Consider the function $p \mapsto f(p)$. It is a linear \mathbb{C}-valued function on $L(D)$. Its kernel is $L(D-p)$, since, in this case $f \in L(D)$ and $f \in L(D-p)$ if and only if $f(p)=0$. Thus $L(D-p) \subset$ $L(D)$ is the kernel of a linear function. If that linear function is non-trivial then $L(D-p)$ has codimension 1 in $L(D)$ and so $L(D) / L(D-p)$ has dimension 1. If the linear functional is trivial, i.e. identically zero, then $L(D-p)=L(D)$ and so $L(D) / L(D-p)$ has dimension 0 .

For the general case, choose a local holomorphic coordinate z centered at p. If $D(p)=-m$ and $f \in L(D)$ then we must have that $f=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots$. The function $f \mapsto a_{m}$ is a well-defined linear functional on $L(D)$. And $f \in L(D-p)$ if and only if $a_{m}=0$. Thus again we have a linear functional whose vanishing defines $L(D-p)$.

Proof of the corollary. Start with the case of $\operatorname{deg}(D)=0 . D-p$ has negative degree. Thus $\ell(D-p)=0$. From (3) we have $\ell(D)$ is either 1 or 0 .

For general D with $\operatorname{deg}(D)>0$ proceed by induction on the degree of D.
Corollary 1.3. For D an effective divisor $\ell(n D) \leq n \operatorname{deg}(D)+1$.
Recall a divisor is called "effective" if $D>0$.
Proof. $\operatorname{deg}(n D)=n \operatorname{deg} D$. Now use the previous corollary.
1.1. Corollaries of the theorem plus Riemann-Roch. We have the following immediate corollaries of the above discussion, and Riemann-Roch.

Corollary 1.4. If $\operatorname{deg}(D)>2 g-2$ then $\ell(D)=\operatorname{deg}(D)+1-g$
Indeed, $\operatorname{deg}(K-D)=\operatorname{deg}(K)-\operatorname{deg}(D)=2 g-2-\operatorname{deg}(D)$ so in this case $\operatorname{deg}(K-D)<0$ and by (1) of the theorem $\ell(K-D)=0$.

Corollary 1.5. Let $p_{1}, p_{2}, \ldots p_{k}, p_{k+1}$ be a list of points on X, not necessarily distinct. Form the sequence of divisors $D^{(k)}=p_{1}+p_{2} \ldots+p_{k}$. Then the integers $\ell\left(D^{(k)}\right)$ form a non-decreasing list starting from $\ell\left(D^{0}\right)=1$, jumping by at most 1 as k increases until $k=2 g-1$. For $k>2 g-2$ we have $\ell\left(D^{(k)}\right)=k+1-g$ so that for k increasing from $2 g-1$ the jump in $\ell\left(D^{(k)}\right)$ is exactly 1 at each step.

Indeed: $\operatorname{deg}\left(D^{(k)}\right)=k$ and $D^{(k-1)}=D^{(k)}-p_{k}$.
The corollary asserts that if we start by imposing exactly $2 g-1$ poles for our meromorphic functions, (so $f \in L\left(D^{(2 g-1)}\right.$) then each additional pole allowed will add exactly one new function to our function space.
1.2. Transcendence degree from R.-R. We are going to use R-R to prove that the transcendence degree of the function field of a Riemann surface is 1. The key is the observation that $\ell(n D) \leq n \ell(D)$ Indeed, $\operatorname{deg}(n D)=n \operatorname{deg}(D)$ and for any divisor $\ell(E) \leq \operatorname{deg}(E)+1$. Thus, setting $C=\operatorname{deg}(D)+1$ we have $\ell(n D) \leq n C$.

Now, suppose that f, g are meromorphic functions which are everywhere algebraically independent.

NOW: draw out tables of d vs $L(D), d=0,1,2$, for various genuses g ! $g=0,1,2,3 \ldots$!

