
(a) intersection matrix for a genus 3 curve: The a curves are in pink, the blue curves in blue.

1. Topological Background for Riemann-Roch

We continue with a X compact Riemann surface . Let g be the genus of X.
The Euler characteristic of X is

χ(X) = 2− 2g.

Now
χ(X) = dimH0(X,R)− dimH1(X,R) + dimH2(X,R)

and the dimension of H0 and H2 are both one, so that

2g = dimH1(X,R)

Now the middle homology comes with the intrinsic intersection form:

H1(X,R)⊗H1(X,R)→ R

which is a non-degenerate symplectic form and is integer on the integer lattice
H1(X,Z) ⊂ H1(X,R). We can choose a basis of 2g closed curves denoted a1, . . . , ag, b1 . . . bg
for H1(X,Z). called the a and b cycles which are adapted to the decomposition of
X as the connected sum of g torii – so that

ai · bi = 1 = −bi · ai

ai · bj = bj · ai = 0, i 6= j

ai · aj = bi · bj = 0, all i, j
See figure for the case g = 3.
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1.0.1. ..to holomorphic one-forms. Now we have H1(X,C) = H1(X,R)⊗RC ∼= C2g.
Using the deRham interpretation, H1(X,C) is interpreted as closed complex-valued
one-forms, modulo exact complex valued one form.

We have the further split:

H1(X,C) = H(1,0)(X,C)⊕H(0,1)(X,C) = holomorphic + anti-holomorphic.

1.0.2. Intersection Pairing on a Riemann surface. On one forms we have: α∧β =
−β ∧ α so that the the intersection pairing

H1(X,R)×H1(X,R)→ R

is symplectic:
∫

X
α ∧ β = −

∫
X
β ∧ α. Moreover, it restricts to an integer valued

symplectic form on the integer lattice H1(X,Z) ⊂ H1(XR). In this way, the group
of integer valued 2g by 2g symplectic matrices becomes a crucial algebraic object
in the study of families of genus g Riemann surfaces.

When g = 1 this is the group SL(2,Z).
Since non-degenerate symplectic forms only exist in even dimensions, we see that

, indeed we must have that H1(X,R) is even.

1.1. 1, 0 and 0,1 forms. First on C. Let z = x + iy be the coordinate. Set
dz = dx+ idy and dz̄ = dx− idy. Then we can write any one-form on C with values
in C as a complex linear combination of dz and dz̄. For example dx = 1

2 (dz + d̄z).
It is worth taking a moment to be careful about the linear algebra here. We
view TpC as a real vector space. Then the space of complex valued real linear
functionals TpC → C is canonically identified with TP C∗) ⊗R C which is a two-
dimensional complex vector space. It breaks up into two components, one spanned
by dz the other spanned by dz̄. Now write J(x, y) = (−y, x) for the real linear
operator which is multiplication by i on TP C. The element dz is characterized
by dz(Jv) = idz(v) while the element d̄z satisfies dz(Jv) = −idz(v). Note: if
v = (v1, v2) then dz(v) = v1 + iv2.

The span of dz is called the space of (1, 0) forms. The span of dz̄ is the space of
(0, 1) forms.

Now we can write any (1, 0) differential form

α = f(z, z̄)dz = f(x, y)dz

A simple computation shows that

dα =
∂f

∂z̄
dz̄ ∧ dz+

If z is a local holomorphic coordinate then dz = dx+ idy is a basis for the ‘(1,0)
forms, while dz̄ = dx− idy is a basis for the (0,1) forms. Any complex valued one
form is a sum of a (1,0) and (0,1) form ...

Given any real symplectic vector space V we can choose a complex structure on
V and a Hermitian metric on the resulting complex vector space such that such that
〈v, w〉 = (v, w) + iω(v, w). This is done by defining the metric 〈v, w〉R = ω(v, Jw)
and ...

1.2. (Co)homological basics. LetX be a compact connected oriented n-manifold.
We review some of the basic facts of the homology and cohomology of X. Eqs ??
hold. Moreover:

dimHk(X,R) = dim(Hk(X,R) = dimHn−k(X,R).
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in case that Hk(X,Z) is torsion-free. We think of elements Σ of Hk(X,R) as
k-dimensional finite simplicial complexes Σ ⊂ X with real coefficients, and with
two such equivalent if they bound a k + 1-dimensional simplicial complex Y : Σ ∼
Σ′ ⇐⇒ Σ−Σ′ = ∂Y . Instead of a simplicial complex, we can think of Σ as a cell
complex or even a k-dimensional manifold. (For general X it may not be be possible
to represent every homology class by that of a k-dimensional manifold.) We think
of elements of Hk(X,R) as k-dimensional integrands, that is to say, degree k closed
differential forms ω on X modulo exact differential forms: ω ∼ ω′ ⇐⇒ ω−ω′ = dβ.
By a small homotopy we can perturb any k-dimensional simplicial complex to one
for which the faces are smoothly embedded, so that we can integrate over it. Then
the dimensional equalities above are induced by integration-defined nondegenerate
pairings

(Hk(X,R)×Hk(X,R)→ R; ([Σ], [ω])→
∫

Σ

ω

and

Hk(X,R)×Hn−k(X,R)→ R; (α, β)→
∫

X

α ∧ β

Stokes’ theorem asserts that these pairings are well-defined, independent of repre-
sentatives Σ of [Σ], ω of [ω], etc.

It is often helpful to view the last pairing geometrically as the intersection be-
tween a k-dimensional cycle and an n-k dimensional cycle. We can wiggle the two
cycles so they intersect transversally, in which case they intersect in a finite number
of points p and these points may be taken to be the interiors of the faces of the
simplices. Each simplex is oriented, so we can assign a + or − sign to the points
according to whether or not the direct sum orientation agrees with the orientation
of TpX.

1.2.1. Lattice structure. We can define homology and cohomology with coefficients
in any ring. The universal coefficient theorem asserts that taking the ring to be
the integers is ‘universal’: if we know the homology over Z then we know the
homology and cohomology over any other ring. When that ring is a field F of
characteristic zero we get that Hk(X,F) = Hk(X,Z) ⊗Z F so Hk(X,Z)/(torsion
embeds in Hk(X,F) as a lattice. This lattice structure is quite useful and gives a
certain rigidity to homology and cohomology.

In the case of Riemann surface we do not need to worry about torsion: there is
no torsion in any of the homology groups. We can suppose H1(X,Z) embedded in
H1(X,R) which in turn embeds in H1(X,C). Similarly we have

H1(X,Z) ⊂ H1(X,R) ⊂ H1(X,C) = H1(X,R)⊕ iH1(X,R)

It is useful to look at the intersection pairing on homology:

Hk(X,Z)×Hn−k(X,Z)→ Z

To see this pairing geometrically , take a k-dimensional cycle Σ and an n − k
dimensional cycle W . We can wiggle the two cycles so that their faces are smooth
and intersect each other transversally in interior points. In that case the number
of these intersection points is finite. Each simplex is oriented, so we can assign a
+ or − sign to the points according to whether or not the direct sum orientation
agrees with the orientation of TpX. Summing these numbers gives the intersection
pairing.
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Finally, the lattice structure of Hk(X,Z) ⊂ Hk(X,R) induces a lattice structure
Hk(X,Z) ⊂ Hk(X,R) : a closed differential form is in the integer lattice if its
integral over any integral chain Σ ∈ Hk(X,Z) is an integer.

1.2.2. Intersection Pairing on a Riemann surface. On one forms we have: α∧β =
−β ∧ α so that the the intersection pairing

H1(X,R)×H1(X,R)→ R
is symplectic:

∫
X
α ∧ β = −

∫
X
β ∧ α. Moreover, it restricts to an integer valued

symplectic form on the integer lattice H1(X,Z) ⊂ H1(XR). In this way, the group
of integer valued 2g by 2g symplectic matrices becomes a crucial algebraic object
in the study of families of genus g Riemann surfaces.

When g = 1 this is the group SL(2,Z).
Since non-degenerate symplectic forms only exist in even dimensions, we see that

, indeed we must have that H1(X,R) is even.

1.3. 1, 0 and 0,1 forms. First on C. Let z = x + iy be the coordinate. Set
dz = dx+ idy and dz̄ = dx− idy. Then we can write any one-form on C with values
in C as a complex linear combination of dz and dz̄. For example dx = 1

2 (dz + d̄z).
It is worth taking a moment to be careful about the linear algebra here. We
view TpC as a real vector space. Then the space of complex valued real linear
functionals TpC → C is canonically identified with TP C∗) ⊗R C which is a two-
dimensional complex vector space. It breaks up into two components, one spanned
by dz the other spanned by dz̄. Now write J(x, y) = (−y, x) for the real linear
operator which is multiplication by i on TP C. The element dz is characterized
by dz(Jv) = idz(v) while the element d̄z satisfies dz(Jv) = −idz(v). Note: if
v = (v1, v2) then dz(v) = v1 + iv2.

The span of dz is called the space of (1, 0) forms. The span of dz̄ is the space of
(0, 1) forms.

Now we can write any (1, 0) differential form

α = f(z, z̄)dz = f(x, y)dz

A simple computation shows that

dα =
∂f

∂z̄
dz̄ ∧ dz+

If z is a local holomorphic coordinate then dz = dx+ idy is a basis for the ‘(1,0)
forms, while dz̄ = dx− idy is a basis for the (0,1) forms. Any complex valued one
form is a sum of a (1,0) and (0,1) form ...

Given any real symplectic vector space V we can choose a complex structure on
V and a Hermitian metric on the resulting complex vector space such that such that
〈v, w〉 = (v, w) + iω(v, w). This is done by defining the metric 〈v, w〉R = ω(v, Jw)
and ...

In our case, the complex structure is the Hodge ∗ operator. ....
We may think of H1(X,R) as formal sums of loops S1 → R where two loops a, b

are equivalent if there is a map of an annulus S1 × [0, 1] → X whose boundary is
a− b, and more generally Σai = 0 if there is an oriented surface S with boundary
∂S and a map h : S → X such that h(∂S) = Σai.


