Proof. This is a consequence of the formula

$$\frac{d}{dt}F_t^*g = F_t^*(L_Xg)$$

from Sect. 2.2.

We now define the volume element on a Riemannian manifold.

2.7.11 Definition. Let M be an oriented Riemannian n-manifold. If $v_1, \ldots, v_n \in T_x M$ are positively oriented, set

$$\mu(v_1,\ldots,v_n) = \left(\det\langle v_i,v_j\rangle\right)^{1/2}$$

This is possible as $det\langle v_i, v_j \rangle$ is ≥ 0 for all $v_1, ..., v_n \in T_x M$ since the metric is positive-definite. Now define μ on all n-tuples by skew symmetry.

Clearly μ is a volume form on M. Locally, $\mu = \sqrt{\det g_{ij}} dx^1 \wedge \cdots \wedge dx^n$. The definition is motivated from the fact that the volume spanned by vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ is $(\det v_i \cdot v_i)^{1/2}$.

Since we have μ , we can use it to define the divergence of a vector field, $\operatorname{div} X$. From the expression for μ above, and the definition $L_X \mu = (\operatorname{div} X) \mu$ from Sect. 2.5, we find, locally, if $V = \sqrt{\operatorname{det} g_{ij}}$,

$$div X = \frac{1}{V} \frac{\partial}{\partial x^i} (VX^i)$$

For $f: M \rightarrow R$, gradf is the vector field defined by

$$\langle \operatorname{grad} f(x), v_x \rangle = \operatorname{d} f(x) \cdot v_x \quad \text{for all} \quad v_x \in T_x M$$

In coordinates,

$$(grad f)^i = g^{ij} \frac{\partial f}{\partial x^j}$$

The Laplace-Beltrami operator on functions is defined by

$$\nabla^2 = div \cdot grad$$

SO

$$\nabla^2 f = \frac{1}{V} \frac{\partial}{\partial x^k} \left(g^{ik} V \frac{\partial f}{\partial x^i} \right)$$

From Stokes' theorem we find that d and -div are adjoints and ∇^2 is

symmetric:

$$\begin{split} &\int_{M} df \cdot X \, d\mu = -\int_{M} f \, div \, X \, d\mu \\ &\int_{M} f \nabla^{2} g \, d\mu = -\int_{M} \langle \, grad \, f, grad \, g \rangle \, d\mu = \int_{M} g \, \nabla^{2} f \, d\mu \end{split}$$

for X, f, g having compact support.

Next we consider the Laplace-de Rham Operator.

2.7.12 Definition. Let M be a Riemannian n-manifold and let β be a k-form. Define an (n-k)-form $*\beta$ by

$$(*\beta)(v_{k+1},\ldots,v_n) = \beta(v_1,\ldots,v_k)$$

where $v_1, ..., v_n$ are oriented orthonormal vectors in T_xM . We call * the **Hodge** star operator.

For example, on \mathbb{R}^3 , $*dx = dy \wedge dz$, $*dy = dx \wedge dz$, and so forth. One can then verify that

$$\langle \alpha, \beta \rangle_x \mu_x = \alpha_x \wedge * \beta_x$$

defines an inner product on k-forms.

2.7.13 Definition. Set $(\alpha, \beta) = \int_{M} \alpha \wedge *\beta$, which gives an L^2 inner product on the sections of $\Omega^k(M)$. Also, define the codifferential operator $\delta = (-1)^{n(k+1)+1} *d*$.

It is easily checked that δ is adjoint of d:

$$(\delta \gamma, \beta) = (\gamma, d\beta)$$

[Use the fact that $\int_M d(\gamma \wedge *\beta) = 0$ and $**\beta = (-1)^{k(n-k)}\beta$.]

2.7.14 Definition. The Laplace-deRham operator is defined by

$$\Delta = d\delta + \delta d$$

The operator Δ is symmetric, and nonnegative

$$(\Delta \alpha, \beta) = (\alpha, \Delta \beta), \quad (\Delta \alpha, \alpha) \ge 0$$

A k-form α satisfying $\Delta \alpha = 0$ is called harmonic. On functions, Δ differs in sign from the Laplace-Beltrami operator ∇^2 . (See, for instance, Nickerson-Spencer and Steenrod [1959].)

The operator Δ is at the basis of "Hodge-De Rham Theory." The central result states that on a compact manifold M without boundary, the kernel of Δ

ISBN 0-80530102-X

