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Riemann-Roch, the Canonical Class and LIne bundles

Goals: Understand K. How K and divisors D can be viewed as line
bundles.
Topological and holomorphic classification of line bundles.
The space of holo. one-forms.
Divisors. A divisor is an element of the free Abelian group
generated by the points p ∈ X . We write Div(X ) for the group of
all divisors on X .
Example: D = p − q where p,q ∈ X .

Equivalently, a divisor is a map D ∶ X → Z whose support is finite
with addition being pointwise addition.

We write
D = Σmipi

or sometimes D = ΣD(p)p.

Degree. The degree map is the homomorphism

deg ∶ DIV → Z;deg(D) = Σmi

Notational Warning! FK use multiplicative notation for divisors.



Divisors and Principal Divisors

For f ∈M(X ) set

(f ) = (f )0 − (f )∞ (1)

= Σordp(f )p (2)

(f )0 = Σmipi where the sum is over the zeros of f and where the
integers mi are the multiplicities of these zeros.
(f )∞ we just saw.
In the last equality above for (f ) the integer “ordp”’ denotes the
order of f at a point p. If f (p) ≠ 0,∞ then ordp(f ) = 0. If
f (p) = 0 then ordp(f ) is the usual multiplicity of that zero p. If
f (p) =∞ then ordp(f ) = −m where m is the order of the pole, or,
what is the same, the order of the zero at p for the function 1/f .



On order.
Order is a multiplicative homomorphism

ordp ∶M(X )p ∖ {0} ≅ C(z) ∖ {0}→ Z.

Thus ordp(1) = 0,ordp(f /g) = ordp(f ) − ordp(g).
Mp denotes the germs of meromorphic functions at p ∈ X .

REFS. Miranda p 26 re ‘order”.
Donaldson section 11.1.2. on ‘Valuations” (or wiki for same)

The order is the valuation associated to the field C(x) at the origin.



“The number of poles equals the number of zeros”

Lemma
If f ∈M(X ) then deg(f ) = 0.

Proof. This lemma follows directly from the characterization of
degree of a map F ∶ X → Y in terms of multiplicities of the points
in the pre-image of any point in the target, independent of the
point. Apply to F = f ∶ X → CP1. Write c for the degree of F .
Then c = deg((f )0) = −deg((f )∞).
Cf also Miranda p 49 prop 4.12.



Definition

L(D) = {f ∈M ∶ D + (f ) ≥ 0} ⊂M(X )

a vector subspace over C of M(X ).

Example. D = 3P −Q. Then
f ∈ L(D) ⇐⇒ (f ) ≥ −D = −3P +Q ⇐⇒ f has a pole of order 3
or less at P a zero at Q and no other poles. f is allowed to have
other zeros besides Q.



Ordering the space of divisors.
Define D = Σmipi ≥ 0 iff all mi ≥ 0

This relation induces a partial order on the set of all divisors:
D ≥ E ⇐⇒ D − E ≥ 0.

BASIC FACTS.
a) D ≥ 0 Ô⇒ C = C1 ⊂ L(D) so dim(L(D)) ≥ 1.
b) D ≤ E Ô⇒ L(D) ⊂ L(E).
c) deg(D) < 0 Ô⇒ L(D) = 0.
d) dim(L(D + p))/L(D)) is 1 or 0. (Here p ∈ X .)
e) deg(D) = 0 Ô⇒ dim(L(D)) is 0 or 1.
f) dim(L(D)) ≤ deg(D) + 1.
g) dim(L(0)) = 1



BREAK OUTS

SOLVE THESE



Proofs.
Of (b). D < E ⇐⇒ −D > −E . Thus (f ) ≥ −D Ô⇒ (f ) ≥ −E or
f ∈ L(D) Ô⇒ f ∈ L(E).

Of (c): Say deg(D) ≤ −1 and f ∈ L(D). Then (f ) ≥ −D so
deg(f ) ≥ deg(−D) ≥ 1. But for any constant or non-constant
meromorphic function we have deg(f ) = 0. So the only possible
f ∈ L(D) is the zero function.

Formally, the divisor of the zero functional is Σp∈X (∞)p since the
zero functional has infinite contact with z = 0. Thus the divisor of
the zero functional is formally infinitely greater than all other finite
divisors. We insist 0 ∈ L(D) for any D. The smallest L(D) can be
is {0}.



Proofs ct’d

Of (e).
Use d): if deg(D) = 0 then by substracting a point from D we get
E = D − p with deg(E) < 0 so dim(L(E)) = 0. It follows from
D = E + p that dim(L(D)) is either 1 or 0.



Of (d).
Equivalent to assertion (d) is:

Theorem
dim(L(D + p)) = dim(L(D)) + ε where ε is one or zero

Proof for the case when p is not in the support of D.
z –local coordinate centered at p.
f ,g ∈ L(D + p) but f ,g ∉ L(D). Expand in z .
f = a−1/z + a0 + . . . ;g = b−1/z + b0 + . . .
Solve a linear equation to find λ1, λ2 ∈ C so that
F = λ1f + λ2g
has no pole at p. ( λ1 = b−1, λ2 = −a−1 work.)
Away from p both f ,g have the pole and zero structure specified
by D. Thus F ∈ L(D) and f ,g are linearly dependent MOD L(D).
In other words, dim(L(D + p)/L(D)) ≤ 1.
....



ct’d

If the quotient dimension is 1 then ε = 1. Otherwise
L(D + p) = L(D) and ε = 0
QED



Of (e).
Keep subtracting points from D. Affter subtracting d + 1 points
p1,p2, . . . ,pd+1 we get a divisor E = D −Σpi of degree −1 so that,
by (b) we have dim(L(E)) = 0. Now add the points pi back in one
by one. At each addition the dimension increases by at most one,
so dim(L(D) ≤ dim(L(E)) + d + 1 = d + 1.



Of (f). L(0) consists of the meromorphic functions having no
poles. These are the constant functions L(0) = C = C1.



Version 1, RR. [Riemann’s version]

Theorem
For d = deg(D) ≥ 0 we have

dim(L(D)) ≥ d + 1 − g

.

*******************************

COR 3:
d + 1 − g ≤ dim(L(D)) ≤ d + 1



g = 0 Ô⇒ dim(L(D)) = d + 1 for d ≥ −1.
In particular, if D = (f ) we have d = 0 and dim(L(D)) = 1:
specifying the poles and zeros of a meromorphic function on CP1

specifies the function up to scale.



PROOF OF COR. 1 to RR.

Recall statement:
D = p1 + . . . + pN (repeated points allowed).
N ≥ g + 1 Ô⇒ ∃f ∈ L(D), f not constant..
Equivalently (f )∞ = D.

Proof: D ≥ 0 so C ⊂ L(D) and dim(L(D)) ≥ 1.
So dim(L(D)) ≥ 2 ⇐⇒ ∃f ∈ L(D) with f not constant.
Version 1 of RR says N + 1 − g ≤ dim(L(D)) so
N ≥ g + 1 Ô⇒ 2 ≤ dim(L(D)).



Full-blown RR. There is a divisor of degree K called the “canonical
divisor” and having degree 2g − 2 such that

Theorem

dim(L(D)) − dim(L(K −D)) = d + 1 − g

.


