Riemann-Roch

January 17, 2022

Riemann-Roch, the Canonical Class and LIne bundles

Goals: Understand K. How K and divisors D can be viewed as line bundles.
Topological and holomorphic classification of line bundles.
The space of holo. one-forms.
Divisors. A divisor is an element of the free Abelian group generated by the points $p \in X$. We write $\operatorname{Div}(X)$ for the group of all divisors on X.
Example: $D=p-q$ where $p, q \in X$.
Equivalently, a divisor is a map $D: X \rightarrow \mathbb{Z}$ whose support is finite with addition being pointwise addition.

We write

$$
D=\Sigma m_{i} p_{i}
$$

or sometimes $D=\Sigma D(p) p$.
Degree. The degree map is the homomorphism

Divisors and Principal Divisors

For $f \in \mathcal{M}(X)$ set

$$
\begin{align*}
(f) & =(f)_{0}-(f)_{\infty} \tag{1}\\
& =\sum \operatorname{ord}_{p}(f) p \tag{2}
\end{align*}
$$

$(f)_{0}=\Sigma m_{i} p_{i}$ where the sum is over the zeros of f and where the integers m_{i} are the multiplicities of these zeros.
$(f)_{\infty}$ we just saw.
In the last equality above for (f) the integer "ord ${ }_{p}$ "' denotes the order of f at a point p. If $f(p) \neq 0, \infty$ then $\operatorname{ord}_{p}(f)=0$. If $f(p)=0$ then $\operatorname{ord}_{p}(f)$ is the usual multiplicity of that zero p. If $f(p)=\infty$ then $\operatorname{ord}_{p}(f)=-m$ where m is the order of the pole, or, what is the same, the order of the zero at p for the function $1 / f$.

On order.
Order is a multiplicative homomorphism

$$
\operatorname{crd}_{p}: \mathcal{M}(X)_{p} \backslash\{0\} \cong \mathbb{C}(z) \backslash\{0\} \rightarrow \mathbb{Z} .
$$

$\operatorname{Thus~ord}_{p}(1)=0, \operatorname{ord}_{p}(f / g)=\operatorname{ord}_{p}(f)-\operatorname{ord}_{p}(g)$.
\mathcal{M}_{p} denotes the germs of meromorphic functions at $p \in X$.
REFS. Miranda p 26 re "order".
Donaldson section 11.1.2. on "Valuations" (or wiki for same)
The order is the valuation associated to the field $\mathbb{C}(x)$ at the origin.
"The number of poles equals the number of zeros"
Lemma
If $f \in \mathcal{M}(X)$ then $\operatorname{deg}(f)=0$.

Proof. This lemma follows directly from the characterization of degree of a map $F: X \rightarrow Y$ in terms of multiplicities of the points in the pre-image of any point in the target, independent of the point. Apply to $F=f: X \rightarrow \mathbb{C P}^{1}$. Write c for the degree of F.
Then $c=\operatorname{deg}\left((f)_{0}\right)=-\operatorname{deg}\left((f)_{\infty}\right)$.
Cf also Miranda p 49 prop 4.12.

Definition

$$
L(D)=\{f \in \mathcal{M}: D+(f) \geq 0\} \subset \mathcal{M}(X)
$$

a vector subspace over \mathbb{C} of $\mathcal{M}(X)$.
Example. $D=3 P-Q$. Then
$f \in L(D) \Longleftrightarrow(f) \geq-D=-3 P+Q \Longleftrightarrow f$ has a pole of order 3 or less at P a zero at Q and no other poles. f is allowed to have other zeros besides Q.

Ordering the space of divisors.
Define $D=\Sigma m_{i} p_{i} \geq 0$ iff all $m_{i} \geq 0$
This relation induces a partial order on the set of all divisors: $D \geq E \Longleftrightarrow D-E \geq 0$.

BASIC FACTS.
a) $D \geq 0 \Longrightarrow \mathbb{C}=\mathbb{C} 1 \subset L(D)$ so $\operatorname{dim}(L(D)) \geq 1$.
b) $D \leq E \Longrightarrow L(D) \subset L(E)$.
c) $\operatorname{deg}(D)<0 \Longrightarrow L(D)=0$.
d) $\operatorname{dim}(L(D+p)) / L(D))$ is 1 or 0 . (Here $p \in X$.)
e) $\operatorname{deg}(D)=0 \Longrightarrow \operatorname{dim}(L(D))$ is 0 or 1 .
f) $\operatorname{dim}(L(D)) \leq \operatorname{deg}(D)+1$.
g) $\operatorname{dim}(L(0))=1$

BREAK OUTS

SOLVE THESE

Proofs.
Of (b). $D<E \Longleftrightarrow-D>-E$. Thus $(f) \geq-D \Longrightarrow(f) \geq-E$ or $f \in L(D) \Longrightarrow f \in L(E)$.

Of (c): Say $\operatorname{deg}(D) \leq-1$ and $f \in L(D)$. Then $(f) \geq-D$ so $\operatorname{deg}(f) \geq \operatorname{deg}(-D) \geq 1$. But for any constant or non-constant meromorphic function we have $\operatorname{deg}(f)=0$. So the only possible $f \in L(D)$ is the zero function.

Formally, the divisor of the zero functional is $\Sigma_{p \in X}(\infty) p$ since the zero functional has infinite contact with $z=0$. Thus the divisor of the zero functional is formally infinitely greater than all other finite divisors. We insist $0 \in L(D)$ for any D. The smallest $L(D)$ can be is $\{0\}$.

Proofs ct'd

Of (e).
Use d): if $\operatorname{deg}(D)=0$ then by substracting a point from D we get $E=D-p$ with $\operatorname{deg}(E)<0$ so $\operatorname{dim}(L(E))=0$. It follows from $D=E+p$ that $\operatorname{dim}(L(D))$ is either 1 or 0 .

Of (d).
Equivalent to assertion (d) is:
Theorem
$\operatorname{dim}(L(D+p))=\operatorname{dim}(L(D))+\epsilon$ where ϵ is one or zero

Proof for the case when p is not in the support of D.
z-local coordinate centered at p.
$f, g \in L(D+p)$ but $f, g \notin L(D)$. Expand in z.
$f=a_{-1} / z+a_{0}+\ldots ; g=b_{-1} / z+b_{0}+\ldots$
Solve a linear equation to find $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ so that
$F=\lambda_{1} f+\lambda_{2} g$
has no pole at p. $\left(\lambda_{1}=b_{-1}, \lambda_{2}=-a_{-1}\right.$ work. $)$
Away from p both f, g have the pole and zero structure specified by D. Thus $F \in L(D)$ and f, g are linearly dependent MOD $L(D)$.
In other words, $\operatorname{dim}(L(D+p) / L(D)) \leq 1$.

If the quotient dimension is 1 then $\epsilon=1$. Otherwise
$L(D+p)=L(D)$ and $\epsilon=0$
QED

Of (e).
Keep subtracting points from D. Affter subtracting $d+1$ points $p_{1}, p_{2}, \ldots, p_{d+1}$ we get a divisor $E=D-\Sigma p_{i}$ of degree -1 so that, by (b) we have $\operatorname{dim}(L(E))=0$. Now add the points p_{i} back in one by one. At each addition the dimension increases by at most one, so $\operatorname{dim}(L(D) \leq \operatorname{dim}(L(E))+d+1=d+1$.

Of (f). $L(0)$ consists of the meromorphic functions having no poles. These are the constant functions $L(0)=\mathbb{C}=\mathbb{C} 1$.

Version 1, RR. [Riemann's version]
Theorem
For $d=\operatorname{deg}(D) \geq 0$ we have

$$
\operatorname{dim}(L(D)) \geq d+1-g
$$

COR 3:

$$
d+1-g \leq \operatorname{dim}(L(D)) \leq d+1
$$

$g=0 \Longrightarrow \operatorname{dim}(L(D))=d+1$ for $d \geq-1$.
In particular, if $D=(f)$ we have $d=0$ and $\operatorname{dim}(L(D))=1$:
specifying the poles and zeros of a meromorphic function on $\mathbb{C} P^{1}$ specifies the function up to scale.

PROOF OF COR. 1 to RR.
Recall statement:
$D=p_{1}+\ldots+p_{N}$ (repeated points allowed).
$N \geq g+1 \Longrightarrow \exists f \in L(D), f$ not constant..
Equivalently $(f)_{\infty}=D$.
Proof: $D \geq 0$ so $\mathbb{C} \subset L(D)$ and $\operatorname{dim}(L(D)) \geq 1$.
So $\operatorname{dim}(L(D)) \geq 2 \Longleftrightarrow \exists f \in L(D)$ with f not constant.
Version 1 of RR says $N+1-g \leq \operatorname{dim}(L(D))$ so $N \geq g+1 \Longrightarrow 2 \leq \operatorname{dim}(L(D))$.

Full-blown RR. There is a divisor of degree K called the "canonical divisor" and having degree $2 g-2$ such that

Theorem

$$
\operatorname{dim}(L(D))-\operatorname{dim}(L(K-D))=d+1-g
$$

