Homework 1. Riemann surface s
Throughout $(x, y) \in \mathbb{C}^{2}$ denote standard coordinates on \mathbb{C}^{2} while $[X, Y, Z]$ are homogeneous coordinates for $\mathbb{C P}^{2}$.

1. Show that the solution set to $x y=0$ is not a Riemann surface.
2. Show that the locus $x^{2}+y^{2}=1$ is a smooth Riemann surface and is diffeomorphic to the tangent bundle to the unit circle.
3. 0 . Compactify example 2 by homogenizing the equation and viewing \mathbb{C}^{2} as the affine chart $Z=0$ in $\mathbb{C P}^{2}$. Denote the resulting curve in $\mathbb{C P}^{2}$ as Q (for "quadric"). This process adds points at infinity to the curve C of example 2 . How many points are added at infinity to C in order to form Q ?
3.1 Now show that Q is biholomorphic to $\mathbb{C P}^{1}$ by the following standard geometric trick from projective geometry.
a) Pick any point $p_{0} \in Q$. Then the set of all lines in $\mathbb{C P}^{2}$ passing through p_{0} forms a $\mathbb{C P}^{1}$.
b) Each point ℓ of this $\mathbb{C P}^{1}$, viewed as a line in $\mathbb{C P}^{2}$, except one intersects Q in exactly one other point p besides p_{0}. Map the line ℓ to that point p. The exceptional line ℓ_{∞} is the tangent line to Q at p_{0} and we map it to p_{0} itself.
c) By using an appropriate basis and coordinates, find an explicit expression for the map of (b). Your expression will be a rational parameterization $t \mapsto$ $[X(t), Y(t), Z(t)]$ of Q relative to an affine coordinatization of the lines ℓ of $\mathbb{C P}^{1}$. Compute either the degree of this map or its critical points to show that this map is diffeomorphism.
4. Let $p(x)$ be a multiplicity free polynomial: thus $p^{\prime}(x) \neq 0$ whenever $p(x)=$ 0 . Let $y^{2}=p(x)$ be the corresponding hyerelliptic curve. Show that $d x / y$ is a holomorphic differential on C.
