Homework 1. Riemann surface s

Throughout $(x, y) \in \mathbb{C}^2$ denote standard coordinates on \mathbb{C}^2 while [X, Y, Z] are homogeneous coordinates for \mathbb{CP}^2 .

1. Show that the solution set to xy = 0 is not a Riemann surface.

2. Show that the locus $x^2 + y^2 = 1$ is a smooth Riemann surface and is diffeomorphic to the tangent bundle to the unit circle.

3. 0. Compactify example 2 by homogenizing the equation and viewing \mathbb{C}^2 as the affine chart Z = 0 in \mathbb{CP}^2 . Denote the resulting curve in \mathbb{CP}^2 as Q (for "quadric"). This process adds points at infinity to the curve C of example 2. How many points are added at infinity to C in order to form Q?

3.1 Now show that Q is biholomorphic to \mathbb{CP}^1 by the following standard geometric trick from projective geometry.

a) Pick any point $p_0 \in Q$. Then the set of all lines in \mathbb{CP}^2 passing through p_0 forms a \mathbb{CP}^1 .

b) Each point ℓ of this \mathbb{CP}^1 , viewed as a line in \mathbb{CP}^2 , except one intersects Q in exactly one other point p besides p_0 . Map the line ℓ to that point p. The exceptional line ℓ_{∞} is the tangent line to Q at p_0 and we map it to p_0 itself.

c) By using an appropriate basis and coordinates, find an explicit expression for the map of (b). Your expression will be a rational parameterization $t \mapsto [X(t), Y(t), Z(t)]$ of Q relative to an affine coordinatization of the lines ℓ of \mathbb{CP}^1 . Compute either the degree of this map or its critical points to show that this map is diffeomorphism.

4. Let p(x) be a multiplicity free polynomial: thus $p'(x) \neq 0$ whenever p(x) = 0. Let $y^2 = p(x)$ be the corresponding hyerelliptic curve. Show that dx/y is a holomorphic differential on C.