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1.

The nth Fermat curve Fn is the algebraic curve

Fn given by Xn + Y n + Zn = 0 in CP2.

for n = 1, 2, 3, 4, . . . ,where [X,Y, Z] are homogeneous coordinates for CP2.
Like any Riemann surface, the Fn’s can be uniformized. The purpose of this note

is to make this uniformization as explicit as I can. Driving the process is a tiling of
Fn by equilateral triangles. The vertex angles of these triangles are π/n and there
are 2n2 of them. They lift to a tiling of the universal cover. If we can compute the
associated group of this tiling we will be a long ways towards the uniformization.

Exercise 1.1. Show that the Fermat curves are smooth.

Exercise 1.2. Use the degree-genus formula to find the genus of Fn.

Exercise 1.3. Show that F1 is biholomorphic to CP1.

Exercise 1.4. Show that F2 is biholomorphic to CP1.

Exercise 1.5. Show that F3 is an elliptic curve. Normalize the cubic defining
it to find out which elliptic curve. Recall that the space of all elliptic curves is
parameterized by a single complex variable τ varying in the upper half -plane. I’m
asking you to find the τ .

2. Uniformizing

When n > 3 the Fermat curves are hyperbolic: they are uniformized by the
upper half plane. This means that there exists a commutative diagram

H //

Γn

��

F̃n

π1(Fn)

��
H/Γn //Fn

where H denotes the upper half plane, the right arrows are biholomorphisms,
the down arrows are holomorphic projections - covering maps, and where Γn ⊂
PSL2(R) is a realization of π1(Fn) as a subgroup of the group PSL2(R) of ori-
entation preserving isometries of H. Uniformization tell us that Fn admits hy-
perbolic structure whose overlap maps – elements of PSL2(R) – are holomorphic
with respect to the Riemann surface structure on Fn. The game is to describe this
structure, the group Γn, and its action on H as explicitly as possible.

Uniformization is hard. But it is also equivariant and the extra symmetries
available on Fn due to the symmetric nature of its defining equation save the day
and give us some purchase to perhaps explicitly compute the uniformizations of the
Fn’ s.

As we will see in the next section, Fn admits a decent sized automorphism group
as a Riemann surface and under uniformization, these symmetries of the complex
structure become isometries of its geometric structure. We can lift the symmetries
all the way up to H where they yield a supergroup D(n) ⊃ Γn in PSL2(R), a

1



2

supergroup which ‘plays well’ with the Γn action on H. The automorphism group
of Fn is a finite group of order 6n2 which contains N = Zn × Zn as a normal
subgroup. As a result we get a quotient map hn : Fn → F1 = Fn/(Zn × Zn). Thus
the previous diagram extents to

H //

Γn

��

F̃n

π1(Fn)

��
H/Γn //

n2

��

Fn

hn

��
(H/Γn)/N //F1 = CP1

The main step in our uniformization will be to construct the aforementioned
supergroup. Specifically, we will motivate and show how to construct this super-
group of Γn as the “von-Dyck triangle group” D(n) := D(n, n, n) ⊂ PSl(2,R) to
be described below, a group based on an equilateral triangle whose vertex angles
are all π/n. This triangle group contains Γn as a normal subgroup with quotient
N . Thus we have an exact sequence of groups:

1→ Γn → D(n, n, n)→ N → 1.

We thus have that (H/Γn)/N = H/D(n, n, n). This later space is topologically the
sphere but is the sphere as an orbifold, with three marked points, each of ‘type n’.
There are a whole host D(n,m, `) of Von Dyck hyperbolic triangle groups and each
one yields such an orbifold. Thurston denotes these orbifolds by S2

n,m,`. To the

extent that this group D(n, n, n) can be explicitly described, so can Γn. Indeed, for
me, one of the main remaining steps is to show that the commutator of D(n, n, n)
is Γn.

2.1. Symmetries and branched covers. Permuting the three homogeneous co-
ordinates or multiplying them by independent nth roots of unity leaves the equation
defining the Fermat curve untouched, hence this group acts by automorphisms on
Fn.

Exercise 2.1. Formalize the above sentence by showing that the group S3 ×s
(Z/nZ)3 acts holomorphically on CP2 so as to map Fn to itself. Show that the
ineffective kernel of the group – the part that does nothing to points of CP2 is a
Z/nZ embedded diagonally into (Z/nZ)3, ie by ω 7→ (ω, ωω). Show that the quotient
of the group by its ineffective kernel is S3 ×s (Z/nZ)2. Show that the order of this
group is 6n2.

This group forms the entire automorphism group of Fn and so will be denoted
Aut(Fn). That assertion requires more work to prove, but we do not need it, and
simply write Aut(Fn) for this group.

Footnote on the ×s notation By this notation “×s” I mean the semidirect
product of groups. Here, S3 acts on (Z/nZ)3 by permuting the three ‘coordinates’ -the
three roots of unity. As a set, the semi-direct product of two groupsG1, G2 is their product.
To form the semi-direct product G1 ×s G2 we need that G1 acts by automorphisms of G2

and we use this automorphism to define the group law. Another way to say the same
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thing is that G2 sits in the semi-direct product by g2 7→ (1, g2) as a normal subgroup,
yielding an exact sequence 1→ G2 → G1 ×s G2 → G2 → 1 of groups.

Define the map h = hn : Fn → F1 = CP1 by [X,Y, Z]→ [Xn, Y n, Zn] := hn([X,Y, Z]).
Since F1 is a line in the projective plane, it is biholomorphic to CP1.

Exercise 2.2. Show that hn is a well-defined holomorphic map whose degree is n2. Find
its branch points - the critical values of hn.

Exercise 2.3. Show that hn realizes the quotient of Fn by the normal subgroup N =
Zn × Zn of Aut(Fn). Show that S3 = Aut(Fn)/N acts on the quotient by permuting the
three branch points.

We can parameterize F1 by t ∈ CP1 so that the three branch points are t = 0, 1,∞.
The branch points lie on the ‘equator’ RP1 ⊂ CP1 parameteized by t ∈ R ∪ {∞}. These
three points, the three arcs into which they divide the equator, and the two hemispheres
into which the equator splits the sphere CP1 define a triangulation of the sphere with
three vertices, three edges and two faces.

Exercise 2.4. Apply h−1
n to each vertex, edge and face of this 3, 3, 2 triangulation of CP1 =

S2 = sphere. Show that this resulting collection of subsets of Fn defines a triangulation
of Fn consisting of 2n2 faces, 3n2 edges and 3n vertices. Show this counting is consistent
with the Euler characteristic of Fn computed by way of the degree-genus formula in an
earlier exercise. Color the two hemispheres (faces) of the sphere black and white, the three
vertices three colors “0’ , 1, and ∞ and the three edges by the pairs of vertices they join.
Correspondingly color the faces of this triangulation of Fn with the colors to which their
images are labelled. In this way the faces are are split into 2 types with n2 of each type,
the vertices are split into 3 types with n vertices of each type and the edges are split into
3 types with n2 edges of each type. Show that exactly one edge connects any two vertices
provided they are of different types.

Cartographic groups. In the above exercise you built a specific Riemann surface X
out of triangles with an associated “cartographic group” which permutes the faces, and
hence the vertices and edges.

Exercise 2.5. Show that Aut(Fn) acts transitively on the black faces of the triangulation,
transitively on the white faces, transitively on the edges and transitively on the vertices.
By a ‘flag’ let us mean a triple consisting of a vertex, edge, and face of the triangulation
where each one is adjacent to the others in the standard way. Define an orientation on
flags and show that Aut(Fn) acts freely transitively on the space of oriented flags.

We saw that there are n vertices of type 0. Out of each, comes 2n edges. The symmetry
group acts transitively on the edges. If we are to put a smooth Riemannian structure on
Fn then the total angle at each vertex is 2π. There is an isometry fixing the vertex and
taking each edge to each other. It follows that the 2n edges coming out of any single vertex
must be equally spaced. Hence we find that the angle between two consecutive
edges meeting at the vertex must be 2π/2n = π/n. We have established that, upon
uniformization, Fn is triangulated by 2n2 equilateral triangles of type π/n, π/n, π/n.

2.2. Cartographic Groups, Dessigns D’Enfants, Belyi. This subsection is by way
of a remark and pointer to related ideas.

Consider a holomorphic map h : X → CP1 branched over 0, 1,∞ and branched over no
other points. Let N be the degree of the map. Then the inverse image of the triangulation
of CP1 just described yields a triangulation of X consisting of 2N triangular faces, split
equally into black and white, 3N edges and m1+m2+m∞ edges where mi = #h−1(i) < N
is related to N and the total branching number at i a per the Riemann-Hurwitz type
formulae. The vertices are labelled according to i and edges are labelled by pairs ij of
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distinct labels coming from i = 0, 1,∞. according to the vertices they join. Each edge
adjoins exactly one black and one white face.

See section 4 of Ityz for more details. This is the type of situation that inspired
Grothendieck’s program of “dessigns d’enfants’. See also “Belyi’s theorem”.

2.3. Triangle groups. The discussion of the triangulation of Fn induced by the branched
cover hn : Fn → F1 = S2 shows the central nature of equilateral triangles with vertex
π/n in understanding the uniformization of Fn. We have drawn some, along with the
associated tiling of the universal cover, for n = 2, 3, 4 .

Do it! -RM
We proceed generally. The complete connected simply connected Riemannian surfaces

of constant curvature are the sphere S2 = CP1, the plane R2 = C and the Poincare upper
half plane H. For uniformity, we will refer to the space of each geometry as simply “the
plane”, or “its plane”. In each geometry we have the notion of a triangle, and the edges
of this triangle generate a subgroup of isometries as we now explain.

Each geometry has its notion of ‘line’. Lines represent the shortest curves joining any
two points. Any two points are joined by a line segment and that line segment is unique
in all cases but one: that of antipodal points on the sphere. A line segment forms part of
a line.

Associated to each line ` is a reflection R` of that geometry’s plane: an isometry whose
fixed point set is precisely that line. The product of two reflections whose lines intersect
in a a point P forms a rotation about P . If the angle between the two lines is θ radians,
directed from the first line to the second, then this rotation is by 2θ radians, in this same
direction. Any isometry of the plane can be expressed as the product of three or fewer
reflections.

Take a triangle in the plane: so three points, or ‘vertices’ and the three line segments -
or edges - joining them. Label the vertices and edges as per usual. The reflections about
the lines containing the three edges generates a subgroup of the isometry group of that
plane. In order for this subgroup to be ‘nice’ we require that all the angles of the triangle
are rational multiples of π. For suppose that the angle at vertex A is θA. By the above,
the reflections about the two edges through A generate the rotation θ 7→ θ + 2θA, angles
being taken mod 2π. If θA is an irrational multiple of π then this action on the circle is
of “Kronecker type’: every orbit is dense in the circle. Such groups - groups for which the
orbits are not all a collection of isolated points but rather have limit points - yield bad
quotient spaces - spaces that are not manifolds in particular. Thus we assume that the
angles of the triangle are all integer. If that multiple is of the form πp/q with p, q integers
with no common factors, then by repeated iteration of this rotation we can achieve the
rotation by 2π/q.

Definition 2.1. An n,m, ` triangle group is the group generated by reflections about the
edges of a triangle whose vertices have angles π/n, π/m, π/`.

The angle sum of a Euclidean triangle is always π: that is 180 degrees. The angle sum
of a spherical triangle is always greater than π. The angle sum of a hyperbolic triangle
is always less than π. Consequently the group is a subgroup of Euclidean, spherical or
hyperbolic isometries depending upon whether 1/n+ 1/m+ 1/` is equal to, greater than,
or less than 1.

For an isometry of the plane to be orientation preserving it is necessary and sufficient
that it be generated by an even number of isometries.

Definition 2.2. The von-Dyck group D(n,m, `) is the subgroup of ∆(n,m, `) consisting
of orientation preserving isometries

Consequently, D(n,m, `) ⊂ ∆(n,m, `) is a normal subgroup of index 2.
Here is the theorem which leads to uniformization. To state it, recall that the “com-

mutator” of a group G is the subgroup [G,G] of G generated by the elements of the form
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ghg−1h−1. It is a normal subgroup and the quotient G/[G,G] is an Abelian group which
is called the Abelianization of G.

Theorem 2.1 (main). The Abelianization of D(n, n, n) is Nn := Zn×Zn. Consequently,
the commutator Γn := [D(n, n, n), D(n, n, n)] of D(n, n, n) is an index n2 normal subgroup
of D(n, n, n). Γn is the fundamental group of Fn and H/Γn = Fn as Riemann surfaces.

2.4. Orbifolds. The key to the proof of the main theorem seems to be the fact that
H/D(n, n, n) is isometric to the orbifold known as S2

n,n,n. Topologically this space is the

two-sphere S2 endowed with three marked points called ‘orbifold points”. Now F1, viewed
as the image of hn, also has three marked points, the three branch points. H induces a
a Riemann surface structure on the orbifold and ,as a Riemann surface it must be the
sphere. Thus there is a unique biholomorphism

bn : S2
n,n,n → F1 = CP1

once we choose a bijection from the three orbifold points to the three branch points of F1.
The theorem then is achieved as a kind of ‘unique lift’ theorem for bn, this lift being a

map from H → F̃n which takes the Γn action to the π1(Fn) action.

2.5. Final notes. Final note. By the work of Takeuchi, it seems that the only n for which
we can have an explicit -technically an arithmetic uniformization are n = 4, 5, 6, 7, 8, 9, 12, 15.
Why only these? Who knows?!
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