Feb 2, 2021 Part B 5 Ketch pf, Degree Farmula.

y: "Stack of records theren Chapter 1 Manifolds and Smooth M_{AB} 26 §5 Tra Use Euler's identity for homogeneous polynomials 10. $\sum_{i=1}^k x_i \frac{\partial p}{\partial x_i} = \mathbf{m} \cdot \mathbf{p}$ sp to prove that 0 is the only critical value of p.] 11. (a (Stack of Records Theorem.) Suppose that y is a regular value of $f: X \longrightarrow Y$, where X is compact and has the same dimension as Y. Share that $f^{-1}(y)$ is a finite set $\{x_1,\ldots,x_N\}$. Prove there exists a neighbor hood U of y in Y such that $f^{-1}(U)$ is a disjoint union $V_1 \cup \cdots \cup V_n$ (b) where V_i is an open neighborhood of x_i and f maps each V_i difference where morphically onto U. [HINT: Pick disjoint neighborhoods W_i of x_i is are mapped diffeomorphically. Show that $f(X-\cup W_l)$ is compacted Pro sul does not contain y.] See Figure 1-13. is a 13. Pro of o V_1 m who gul to p form a si Figure 1-13 $f: X \to 1$ constrain be a polynomial with complex coefficients, and consider the assume map $z \to p(z)$ of the complex coefficients. smooth co Let 8. map $z \rightarrow p(z)$ of the complex plane $C \rightarrow C$. Prove that this is mersion except at finitely. set of sol solution s tion will notion of

At the heart of the degree formula lies the following theorem, which should remind you strongly of a fundamental property of degree.

Theorem. If $X = \partial W$ and $f: X \to Y$ extends smoothly to all of W, then $\int_X f^* \omega = 0$ for every k-form ω on Y. (Here X and W are compact, all three manifolds are oriented and $k = \dim X = \dim Y$.)

Proof. Let $F: W \to Y$ be an extension of f. Since F = f on X,

$$\int_X f^*\omega = \int_{\partial W} F^*\omega = \int_W F^*d\omega.$$

But ω is a k-form on a k-dimensional manifold, so $d\omega = 0$. (All k+1 forms on k-dimensional manifolds are automatically 0.) Q.E.D.

k-dimensional manifolds, then for every k-form ω on Y

$$\int_X f_0^* \omega = \int_X f_1^* \omega.$$

Proof. Let $F: I \times X \longrightarrow Y$ be a homotopy. Now

$$\partial(I\times X)=X_1-X_0,$$

so

$$0 = \int_{\partial (I \times X)} (\partial F)^* \omega = \int_{X_1} (\partial F)^* \omega - \int_{X_0} (\partial F)^* \omega$$

(0 according to the theorem). But when we identify X_0 and X_1 with X, ∂F becomes f_0 on X_0 and f_1 on X_1 . Q.E.D.

A local version of the degree formula around regular values is very easily established, and its proof shows most concretely the reason why the factor deg(f) appears.

Lemma. Let y be a regular value of the map $f: X \to Y$ between oriented k-dimensional manifolds. Then there exists a neighborhood U of y such that the degree formula

$$\int_{\mathcal{S}} f^* \omega = \deg(f) \int_{Y} \omega$$

is valid for every k-form ω with support in U.

Proof. Because f is a local diffeomorphism at each point in the preimage $f^{-1}(y)$, y has a neighborhood U such that $f^{-1}(U)$ consists of disjoint open sets V_1, \ldots, V_N , and $f: V_i \to U$ is a diffeomorphism for each $i = 1, \ldots, N$ (Exercise 7, Chapter 1, Section 4). If ω has support in $f^{-1}(U)$; thus

$$\int_X f^*\omega = \sum_{i=1}^N \int_{V_i} f^*\omega.$$

But since $f: V_i \to U$ is a diffeomorphism, we know that

$$\int_{V_i} f^* \omega = \sigma_i \int_{U} \omega,$$

the sign σ_i being ± 1 , depending on whether $f: V_i \to U$ preserves or reverses or ientation. Now, by definition, deg $(f) = \sum \sigma_i$, so we are done. Q.E.D.

Finally, we prove the degree formula in general. Choose a regular value y for $f: X \to Y$ and a neighborhood U of y as in the lemma. By the Isotopy Lemma of Chapter 3, Section 6, for every point $z \in Y$ we can find a diffeomorphism $h: Y \rightarrow Y$ that is isotopic to the identity and that carries y to z. Thus the collection of all open sets h(U), where $h: Y \to Y$ is a diffeomorphism isotopic to the identity, covers Y. By compactness, we can find finitely many maps h_1, \ldots, h_n such that $Y = h_1(U) \cup \cdots \cup h_n(U)$. Using a partition of unity, we can write any form ω as a sum of forms, each having support in one of the sets $h_i(U)$; therefore, since both sides of the degree

$$\int_X f^* \omega = \deg(f) \int_Y \omega$$

are linear in ω , it suffices to prove the formula for forms supported in some h(U).

So assume that ω is a form supported in h(U). Since $h \sim$ identity, then $h \circ f \sim f$. Thus the corollary above implies

$$\int_X f^*\omega = \int_X (h \circ f)^*\omega = \int_X f^*h^*\omega.$$

As $h^*\omega$ is supported in U, the lemma implies

$$\int_X f^*(h^*\omega) = \deg(f) \int_Y h^*\omega.$$

Finally, the diffeomorphism h is orientation preserving; for $h \sim$ identity implies deg(h) = +1. Thus the change of variables property gives

$$\int_{Y} h^* \omega = \int_{Y} \omega,$$

d cla

$$\int f^*\omega = \deg(f) \int \omega.$$