
Quadratic forms, bilinear forms and symmetric matrices.
Throughout V denotes a real vector space and V∗ its dual. We set dim(V) = n.

Understanding the case dim(V) = n2 well usually equips you for the general case.
In the back of your mind V is to be thought of as the tangent space to a manifold

at a point. The important thing about V is that although it has a basis, it has
no prefered basis: no prefered “xy” coordindates for n = 2. (Think of the plane
x + y + z = 0. Why choose one basis over the other?) Geometrically then, when
n = 2, V is a plane with a marked origin, but no preferred axes.

1. A single quadratic form.

Definition: A quadratic form on V is a homogeneous quadratic map Q : V→ R.
This means

Q(λ~v) = λ2Q(~v),

and that, relative to any basis, Q is a quadratic polynomial in the coordinates.
Planar case, n = 2 Choose a basis e1, e2 for V then

Q(xe1 + ye2) = ax2 + 2bxy + cy2

for some numbers a, b, c. Thus, the three numbers a, b, c determine the quadratic
form. Since

Q(xe1 + ye2) = (x y)

(
a b
b c

)(
x
y

)
we call

QB =

(
a b
b c

)
the matrix of Q relative to the basis B = {e1, e2}, or with respect to the coordinates
x, y for V.

The tensor notation for Q is

Q = adx2 + 2bdxdy + cdy2.

where dx, dy ∈ V∗ are the dual basis to e1, e2 and we revert to manifold notation
and write e1 = ∂

∂x , e2 = ∂
∂y . The products dx2, dxdy, dy2 are emphatically NOT

exterior (‘∧) products of one-forms, but rather symmetric products of basis one-
forms.

Symmetric product of one- forms. We want to understand the cross term
dxdy occuring above it helps to expand out (dx+ dy)2 and stare at the cross term.
It also helps to think of quadratic forms as their equivalents: bilinear symmetric
forms. To turn a bilinear symmetric form β : V × V → R into a quadratic form is
a simple thing:

Qβ(v) = β(v, v).

The reverse of this procedure is called “polarization” and we will get to it shortly.
For right now, accept that the space of bilinear symmetric forms on V is precisely
the same space as the space of all quadratic forms on V.

On the one hand, if α ∈ V∗ is any one-form, then α2 ∈ S2(V∗) must be the
quadratic form sends v, w ∈ V to α(v)α(w). So we understand the meaning of
(du + dv)2. But formally (du + dv)2 = du2 + 2dudv + dv2 and we understand the
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meaning of du2 and dv2. Thus dudv = 1
2 ((du + dv)2 − du2 − dv2). This requires

that if θ, α ∈ V∗ then their ‘symmetric product” is the bilinear form

α�s β : v, w 7→ 1

2
(α(v)β(w) + α(w)β(v).

Exercise 1. Verify that a = Q(e1), c = Q(e2).
Challenge: How do you recover the coefficient b from applying Q to vectors

v, w ∈ V?
What does QB look like in a different basis, or, how does Q change under change

of coordinates?
Example 1. We can convert Q(x, y) = xy to Q(u, v) = u2− v2 by making the

invertible linear change of coordinates

x = (u+ v), y = (u− v)

Let B′ = {f1, f2} be another basis for V and let QB′ =

(
α β
β γ

)
be the matrix

of Q relative to this new matrix.
Exercise 2 Prove

QB′ = BQBB
t (∗)

where B is the change of basis matrix from B′ to B. Thus:

f1 = B1
1e1 +B2

1e2

f2 = B1
2e1 +B2

2e2;

B =

(
B1

1 B2
1

B1
2 B2

2

)
Returning to example 1, the matrix for xy is Q1 =

(
0 1

2
1
2 0

)
while the matrix for

u2 − v2 is Q2 =

(
1 0
0 −1

)
. Verify that BQ1B

t = Qt with B =

(
1 1
1 −1

)
Theorem 1.1 (Basic theorem of real quadratic forms, 2 dimensional case.). If V is
a two-dimensional vector space and Q is a quadratic form on V then V is equivalent
to exactly one of: x2 + y2,−(x2 + y2), x2 − y2, x2,−x2 or 0. In other words, there
are linear coordinates x, y on V such that Q = ε1x

2 + ε2y
2, εi ∈ {−1, 0, 1}.

In matrix terms, this theorem asserts that there is a basis B for V such that QB
is exactly one of

QB = ±
(

1 0
0 1

)
,

(
1 0
0 −1

)
,±

(
1 0
0 0

)
,

(
0 0
0 0

)
.

In tensor notation, at a point, this theorem asserts that

Q = ±(dx2 + dy2), dx2 − dy2,±dx2, 0.

Definition 1.2. The rank of Q is the rank of QB. The index of Q is a listing of the
number of +1’s and -1’s in the normal form (*), so it is (2, 0), (0, 2), (1, 1), (1, 0), (0, 1), (0, 0)
respectively for x2 + y2,−x2 − y2, x2 − y2, x2,−x2, 0.
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The basic theorem thus asserts that two quadratic forms on V are equivalent
(can be changed one into the other by a linear invertible change of coordinates) if
and only if their ranks and indices are the same.

It is worth meditating on the contrast between this basic theorem of quadratic
forms, and the basic theory of linear operators L : V → V. Most linear operators
have eigenvalues λ1, λ2. The eigenvalues are continuous invariants: real numbers,
with any (unordered) pair of real numbers occuring. Operators with different eigen-
values are not equivalent. When the eigenvalues are distinct, they form a complete
set of invariants: two diagonalizable operators are equivalent if and only if their
eigenvalues are equal.

On the other hand, the basic theorem of quadratic forms asserts that a quadratic
form has nothing like eigenvalues. The only invariant of a quadratic form is its rank
and index and these invariants form a finite set.

At the heart of this difference between linear transformations and quadratic
forms is the difference in transformation laws. The matrix LB of a linear transfor-
mation L transforms under change of basis according to

LB′ = BLBB
−1

which is to be contrasted with (*) above:

QB′ = BQBB
t (∗).

Example 2. Hessian.
Let f : V→ R be a smooth function. Then its 2nd order Taylor expansion reads:

f(q) = f(0) + df0(q) +
1

2
d2f0(q) + o(|q|2).

The second order term, 1
2d

2f0(q) is the Hessian of f at 0 and is a quadratic form.

2. Bilinear pairing of a quadratic form

Pretend that Q(v) = 〈v, v〉 for some inner product 〈·, ·〉 on V. A bit of algebra
shows that we can recover the inner product from Q:

Exercise 3. [Polarization] If Q(v)〈v, v〉, then expand out Q(V +W ), Q(V −W )
to show that

〈V,W 〉 =
1

4
[Q(V +W )−Q(V −W )]

Definition 2.1. A symmetric bilinear form on V is a map β : V × V → R which
is symmetric: β(V,W ) = β(W,V ) for all V,W ∈ V and bilinear, meaning linear in
each slot β(cV + Z,W ) = cβ(V,W ) + β(Z,W ) and similarly for β(W, cV + Z).

A symmetric bilinear form β gives rise to a quadratic form

Q(V ) = β(V, V ).

On the other hand, the polarization exercise 3 applies to any quadratic form Q to
yield a symmetric bilinear form β defined by

β(V,W ) =
1

4
[Q(V +W )−Q(V −W )].

These processes are inverses: the quadratic form of the bilinear form β of Q is again
Q. Quadratic forms and symmetric bilinear forms are realy the same thing!

Exercise 4. The bilinear form associated to the quadratic form Q(x, y) = xy
is β((x1, y1), (x2, y2) = 1

2 (x1y2 + x2y1)
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Exercise 5. Return to notation from the beginning of these notes: B = {e1, e2}

a basis for V, QB =

(
a b
b c

)
the matrix of Q relative to this basis. Show that

the bilinear form β associated to Q is given by

β(x1e1 + y1e2, x2e1 + y2e2) = (x1 y1)

(
a b
b c

)(
x2
y2

)
.

3. Positive definite inner products.

In case Q > 0 whenever v 6= 0, we say that the associated bilinear form β is an
inner product. And we say that Q is positive-definite. In this case Q equivalent
to x2 + y2, or, written in tensor form, dx2 + dy2. It is a simple algebraic exercise
to verify that Q is positive definite if and only if its matrix QB as above satisfies
ac− b2 > 0 (notice closeness to the discriminant) and a, c > 0.

Exercise 6. Let β be the bilinear form associated to Q, and suppose that β is an
inner product. Let QB the matrix of Q relative to the basis {B} = {e1, e2} for V.
Prove that QB = Id if and only if {e1, e2} are a β- orthonormal basis.

4. Pairs of quadratic forms

Now suppose we are given two quadratic forms Q1, Q2 on the same vector space
V. All of a sudden we have invariants! In geometry, the two quadratic forms are
the 1st and 2nd fundamental forms.

Theorem 4.1. Let Q1, Q2 be two quadratic forms on V with Q1 positive definite.
Let β1, β2 be the corresponding bilinear forms. Then there exists a unique linear
operator S : V→ V such that β2(v, w) = β1(v, Sw) holds for all v, w ∈ V. Moreover,
S is β1-symmetric: β1(Sv,w) = β1(v, Sw) for all v, w ∈ V.

Definition 4.2. We say that S “intertwines” Q2 and Q1 if it relates them as in
the theorem.

Theorem 4.3. Any (β1) symmetric operator S is diagonalizable over the reals:
there exists a (β1)- orthonormal basis e1, e2 such that Se1 = k1e1, Se2 = k2e2,
ki ∈ R

Corollary 4.4. Given a pair of quadratic forms, one of which is positive definite,
there is a coordinate system which simultaneously diagonalizes them:

Q1 = x2 + y2

Q2 = k1x
2 + k2y

2.

The eigenvalues k1, k2 are the continuous invariants of the pair Q1, Q2.
Exercise. Fix the inner product β1 on V. Show that the linear space of all

quadratic forms on V is linearly isomorphic to the space of all β1-symmetric linear
transformations S : V→ V. What is the dimension of this space?

Our situation.
Q1 = ds2|p = Ip is the 1st fundamental form, which is just the restriction of the

inner product of R3 to the tangent space V = TpΣ.
Q2 is the second fundamental form.
S, the intertwining operator, is the shape operator, which is minus the differential

of the Gauss map at p. S = −dNp.
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The eigenvalues k1, k2 are called the “principal curvatures”. Euler showed, fol-
lowing the ‘min-max interpretation” immediately below that these numbers (de-
pending on p) are the curvatures of certain ‘extremal planar-curve sections” of the
surface Σ. See section 5.3 of text and immediately below.

5. Finding and interpreting the eigenvalues. Min-max.

Form the quotient

q = Q2/Q1 : V \ 0→ R.

Note the quotient is homogeneous of degree 0: q(λv) = q(v), λ 6= 0 ∈ R, v 6= 0 ∈ V
and as such, is a function on the space of lines through the origin in V. This space
of lines forms a circle.

Theorem 5.1. The critical values of the quotient q = Q2/Q1 are precisely the
eigenvalues of S, i.e. k1, k2. The corresponding critical lines, being the span of
the nonzero vectors v for which dqv = 0 are the eigenlines: the spans of the (two)
eigenvectors of S.

Proof 1. Use the previous corollary and compute.
Proof 2. Use calculus and the computation. dQi(p)(w) = 2βi(p, w).
Proof 3. Argue that extremizing q is the same as extremizing Q2 subject to the

constraint that Q1 = 1. Use Lagrange multipliers.
Because the circle is two dimensional, there will always be two critical points for

any function on it, a max and a min. This yields

k1 = minvQ2(v)/Q1(v) = min{v:Q1(v)=1}Q2(v).

and

k1 = maxvQ2(v)/Q1(v) = max{v:Q1(v)=1}Q2(v).



6

We have been writing our first fundamental form, or metric (at a point) as

ds2 = Edu2 + 2Fdudv +Gdv2.

If e1, e1 are the basis associated to the coordinates u, v, so that du, dv are the dual
basis to e1, e2 then the inner product associated to ds2 is

β(u1e1 + v1e2, u2e1 + v2e2) = (u1 v1)

(
E F
F G

)(
u2
v2

)
.

The second fundamental form is traditionally written

II = Ldu2 + 2Mdudv +Ndv2.

REcall our basic theorem: the surface near p can uniquely be represented as a
graph over the tangent plane TpΣ. For linear algebraic convenience, think of TpΣ
as a plane through the origin, so that p+TpΣ is the geometric tangent plane. Then
what this basic graph representation theorem asserts is that there is a function
f : TpΣ → R, unique up to choice of normal, such that the surface near p is the
graph of f : which is to say, any point q on Σ sufficeintly close to p is uniquely
expressible in the form:

q = (p+ v) + f(v) ~N(p)

where ~N(p) is the normal vector to Σ at p. We have:

IIp = Hess(fp).


