
1. Riemannian surfaces

Let Q be an oriented Riemannian surface. An admissible coframe θ = (θ1, θ2) is
an oriented orthonormal basis for T ∗Q. This means that θ1 ∧ θ2 is the area form
(defined by the orientation and metric) and that the metric is ds2 = (θ1)2 + (θ2)2.
Equivalently, a basis for T ∗

pQ is an oriented orthonormal coframe if and only if it
is dual to some oriented orthonormal basis {e1, e2} for TpQ.

Any two oriented orthonormal coframes θ = (θ1, θ2) and θ̃ = (θ̃1, θ̃2) are related
by a rotation:

(1)

(
θ̃1

θ̃2

)
=

(
cosφ − sinφ
sinφ cosφ

)(
θ1

θ2

)
.

It follows that the set B of all oriented orthonormal coframes forms a circle bundle
π : B → Q, the circle being G = SO(2), parameterized by φ. B is the G-structure,
which encodes all the data of our oriented Riemannian surface. (See section ?? for
the formal definition of a G-structure over a manifold.)

Given a local section θ : U → B (that is, a smooth family of orthonormal
coframes defined in a neighborhood U of Q), equation 1 expresses any other coframe

θ̃ defined in that neighborhood. Hence equation 1 defines a local trivialization
BU
∼= U ×G by sending (q, g) to g−1(θ(q)).

Any two-form on Q is of the form fθ1 ∧ θ2 for some function f . Thus dθ1 =
c1θ

1 ∧ θ2, dθ2 = c2θ
1 ∧ θ2 for some functions c1, c2. Cartan tells us to rewrite this

in the form

(2) dθ1 = −ω ∧ θ2, dθ2 = +ω ∧ θ1.
Viewed as a linear equation for the one-form ω, this equation has a unique solution.
We ask the reader to check that the solution is ω = −c1θ1 − c2θ2.

Suppose that (θ̃1, θ̃2) is another coframe, related to (θ1, θ2) by the transformation
1. Differentiating this transformation we compute

dθ̃1 = −ω̃ ∧ θ̃2, dθ̃2 = +ω̃ ∧ θ̃1

with ω̃ = dφ + ω, where φ : U ⊂ Q → S1 is the angle of the transformation. It
follows that dω = dω̃. Consequently the function

(3) K =
dω

θ1 ∧ θ2
is well-defined, independent of the frame. K is the curvature of Gauss and ω is the
Levi-Civita connection, viewed relative to the frame θ.

A word or two is in order concerning the choice of the form of the equations that
define ω. The rotation group SO(2) has for its Lie algebra the space of two-by-two
skew symmetric matrices, with typical element(

0 −ω
ω 0

)
Equations 2 read

(4) d

(
θ1

θ2

)
= −

(
0 −ω
ω 0

)
∧
(
θ1

θ2

)
.

This is the form of Cartan’s structure equations for the G-structure of a Riemannian
surface. The general structure equation has the schematic shape

d(coframe) = (Lie algebra valued one-form) ∧ (coframe) + (torsion).
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For a Riemannian surface the torsion term is zero.

Exercise 1. Let ∇ be the Levi-Civita connection associated to our Riemannian
metric on the surface. Let (e1, e2) be the orthonormal frame dual to the coframe
(θ1, θ2). Use Cartan’s formula dθ(X,Y ) = X[θ(Y )]− Y [θ(X)]− θ([X,Y ]) to show
that

∇X

(
e1
e2

)
= −

(
0 ω(X)

−ω(X) 0

)
∧
(
e1
e2

)
.

Exercise 2. The Riemannian curvature tensor is defined by R(X,Y )Z = [∇X ,∇Y ]Z−
∇[X,Y ]Z. Compute that the Gaussian curvature, as defined in equation 3, satisfies
K = −〈R(e1, e2)e1, e2〉.

We now redo these computations in global terms on B. First, we observe that
equation 1 can also be viewed as defining a global R2-valued one-form on B. Replace
θ1 and θ2 on the right-hand side by their pull-backs π∗θ1 and π∗θ2 to B. View the
left-hand side (the θ̃i) as forms Θi on B defined at the point whose fiber coordinate
is φ relative to the local trivialization BU

∼= U ×G (also defined by equation 1). In
other words, we rewrite this equation as(

Θ1

Θ2

)
=

(
cosφ − sinφ
sinφ cosφ

)(
π∗θ1

π∗θ2

)
.

To see that this form is indeed globally defined, let V ∈ TbB, where b has fiber
coordinate φ. Then by definition, π∗θi(b)(V ) = θi(dπbV ), so that Θ1(b)(V ) =
cos(φ)θ1(dπbV ) − sin(φ)θ2(dπbV ). Since φ is the fiber coordinate for b, the point

b represents the basis (θ̃1, θ̃2) for T ∗
pQ, p = π(b). Think of the coframe b as the

linear map TpQ → R2 whose two components are θ̃1 and θ̃2. With this in mind,
we see that Θ(b)(V ) = b(dπbV ) as R2-valued two-forms. This equality shows that
the form Θ is indeed globally defined. Θ is called the tautological, or canonical,
one-form. It plays a central role in Cartan’s method.
B is three-dimensional, and Θ1, Θ2, and dφ coframe it. It is better to choose Θ1,

Θ2, and α = dφ + ω, with ω defined as in equation 2 in terms of a local coframe.
This α is indeed globally defined, independent of the choice of frame, even though
each of its summands is frame dependent. Equation 4 becomes

(5)

(
dΘ1

dΘ2

)
= −

(
0 α
−α 0

)
∧
(

Θ1

Θ2

)
.

This equation in turn uniquely determines α. The one-form α is the connection
one-form associated to the Levi-Civita connection.

The definition of K in equation 3, together with the fact that Θ1∧Θ2 = π∗(θ1∧
θ2), shows that

(6) dα = KΘ1 ∧Θ2.

Again, this equation can be turned around and taken as a definition ofK. Equations
5 and 6 are the basic equations of Riemannian surface theory from Cartan’s point
of view.

Exercise 3. Using d2Θi = 0, show that equation 5 implies that dα has the form of
equation 6, i.e. that it has no α ∧Θi terms.

Exercise 4. Using d2α = 0 and equation 5, show that K as defined by equation 6
must be a function on Q.


