1. Riemannian surfaces

Let Q be an oriented Riemannian surface. An admissible coframe $\theta=\left(\theta^{1}, \theta^{2}\right)$ is an oriented orthonormal basis for $T^{*} Q$. This means that $\theta^{1} \wedge \theta^{2}$ is the area form (defined by the orientation and metric) and that the metric is $d s^{2}=\left(\theta^{1}\right)^{2}+\left(\theta^{2}\right)^{2}$. Equivalently, a basis for $T_{p}^{*} Q$ is an oriented orthonormal coframe if and only if it is dual to some oriented orthonormal basis $\left\{e_{1}, e_{2}\right\}$ for $T_{p} Q$.

Any two oriented orthonormal coframes $\theta=\left(\theta^{1}, \theta^{2}\right)$ and $\tilde{\theta}=\left(\tilde{\theta}^{1}, \tilde{\theta}^{2}\right)$ are related by a rotation:

$$
\binom{\tilde{\theta}^{1}}{\tilde{\theta}^{2}}=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \tag{1}\\
\sin \phi & \cos \phi
\end{array}\right)\binom{\theta^{1}}{\theta^{2}} .
$$

It follows that the set B of all oriented orthonormal coframes forms a circle bundle $\pi: B \rightarrow Q$, the circle being $G=S O(2)$, parameterized by $\phi . B$ is the G-structure, which encodes all the data of our oriented Riemannian surface. (See section ?? for the formal definition of a G-structure over a manifold.)

Given a local section $\theta: U \rightarrow B$ (that is, a smooth family of orthonormal coframes defined in a neighborhood U of Q), equation 1 expresses any other coframe $\tilde{\theta}$ defined in that neighborhood. Hence equation 1 defines a local trivialization $B_{U} \cong U \times G$ by sending (q, g) to $g^{-1}(\theta(q))$.

Any two-form on Q is of the form $f \theta^{1} \wedge \theta^{2}$ for some function f. Thus $d \theta^{1}=$ $c_{1} \theta^{1} \wedge \theta^{2}, d \theta^{2}=c_{2} \theta^{1} \wedge \theta^{2}$ for some functions c_{1}, c_{2}. Cartan tells us to rewrite this in the form

$$
\begin{equation*}
d \theta^{1}=-\omega \wedge \theta^{2}, \quad d \theta^{2}=+\omega \wedge \theta^{1} \tag{2}
\end{equation*}
$$

Viewed as a linear equation for the one-form ω, this equation has a unique solution. We ask the reader to check that the solution is $\omega=-c_{1} \theta^{1}-c_{2} \theta^{2}$.

Suppose that $\left(\tilde{\theta}^{1}, \tilde{\theta}^{2}\right)$ is another coframe, related to $\left(\theta^{1}, \theta^{2}\right)$ by the transformation 1. Differentiating this transformation we compute

$$
d \tilde{\theta}^{1}=-\tilde{\omega} \wedge \tilde{\theta}^{2}, \quad d \tilde{\theta}^{2}=+\tilde{\omega} \wedge \tilde{\theta}^{1}
$$

with $\tilde{\omega}=d \phi+\omega$, where $\phi: U \subset Q \rightarrow S^{1}$ is the angle of the transformation. It follows that $d \omega=d \tilde{\omega}$. Consequently the function

$$
\begin{equation*}
K=\frac{d \omega}{\theta^{1} \wedge \theta^{2}} \tag{3}
\end{equation*}
$$

is well-defined, independent of the frame. K is the curvature of Gauss and ω is the Levi-Civita connection, viewed relative to the frame θ.

A word or two is in order concerning the choice of the form of the equations that define ω. The rotation group $S O(2)$ has for its Lie algebra the space of two-by-two skew symmetric matrices, with typical element

$$
\left(\begin{array}{cc}
0 & -\omega \\
\omega & 0
\end{array}\right)
$$

Equations 2 read

$$
d\binom{\theta^{1}}{\theta^{2}}=-\left(\begin{array}{cc}
0 & -\omega \tag{4}\\
\omega & 0
\end{array}\right) \wedge\binom{\theta^{1}}{\theta^{2}}
$$

This is the form of Cartan's structure equations for the G-structure of a Riemannian surface. The general structure equation has the schematic shape

$$
d(\text { coframe })=(\text { Lie algebra valued one-form }) \wedge(\text { coframe })+(\text { torsion })
$$

For a Riemannian surface the torsion term is zero.
Exercise 1. Let ∇ be the Levi-Civita connection associated to our Riemannian metric on the surface. Let $\left(e_{1}, e_{2}\right)$ be the orthonormal frame dual to the coframe $\left(\theta^{1}, \theta^{2}\right)$. Use Cartan's formula $d \theta(X, Y)=X[\theta(Y)]-Y[\theta(X)]-\theta([X, Y])$ to show that

$$
\nabla_{X}\binom{e_{1}}{e_{2}}=-\left(\begin{array}{cc}
0 & \omega(X) \\
-\omega(X) & 0
\end{array}\right) \wedge\binom{e_{1}}{e_{2}}
$$

Exercise 2. The Riemannian curvature tensor is defined by $R(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-$ $\nabla_{[X, Y]} Z$. Compute that the Gaussian curvature, as defined in equation 3, satisfies $K=-\left\langle R\left(e_{1}, e_{2}\right) e_{1}, e_{2}\right\rangle$.

We now redo these computations in global terms on B. First, we observe that equation 1 can also be viewed as defining a global \mathbb{R}^{2}-valued one-form on B. Replace θ^{1} and θ^{2} on the right-hand side by their pull-backs $\pi^{*} \theta^{1}$ and $\pi^{*} \theta^{2}$ to B. View the left-hand side (the $\tilde{\theta}^{i}$) as forms Θ^{i} on B defined at the point whose fiber coordinate is ϕ relative to the local trivialization $B_{U} \cong U \times G$ (also defined by equation 1). In other words, we rewrite this equation as

$$
\binom{\Theta^{1}}{\Theta^{2}}=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)\binom{\pi^{*} \theta^{1}}{\pi^{*} \theta^{2}}
$$

To see that this form is indeed globally defined, let $V \in T_{b} B$, where b has fiber coordinate ϕ. Then by definition, $\pi^{*} \theta^{i}(b)(V)=\theta^{i}\left(d \pi_{b} V\right)$, so that $\Theta^{1}(b)(V)=$ $\cos (\phi) \theta^{1}\left(d \pi_{b} V\right)-\sin (\phi) \theta^{2}\left(d \pi_{b} V\right)$. Since ϕ is the fiber coordinate for b, the point b represents the basis $\left(\tilde{\theta}^{1}, \tilde{\theta}^{2}\right)$ for $T_{p}^{*} Q, p=\pi(b)$. Think of the coframe b as the linear map $T_{p} Q \rightarrow \mathbb{R}^{2}$ whose two components are $\tilde{\theta}^{1}$ and $\tilde{\theta}^{2}$. With this in mind, we see that $\Theta(b)(V)=b\left(d \pi_{b} V\right)$ as \mathbb{R}^{2}-valued two-forms. This equality shows that the form Θ is indeed globally defined. Θ is called the tautological, or canonical, one-form. It plays a central role in Cartan's method.
B is three-dimensional, and Θ^{1}, Θ^{2}, and $d \phi$ coframe it. It is better to choose Θ^{1}, Θ^{2}, and $\alpha=d \phi+\omega$, with ω defined as in equation 2 in terms of a local coframe. This α is indeed globally defined, independent of the choice of frame, even though each of its summands is frame dependent. Equation 4 becomes

$$
\binom{d \Theta^{1}}{d \Theta^{2}}=-\left(\begin{array}{cc}
0 & \alpha \tag{5}\\
-\alpha & 0
\end{array}\right) \wedge\binom{\Theta^{1}}{\Theta^{2}}
$$

This equation in turn uniquely determines α. The one-form α is the connection one-form associated to the Levi-Civita connection.

The definition of K in equation 3 , together with the fact that $\Theta^{1} \wedge \Theta^{2}=\pi^{*}\left(\theta^{1} \wedge\right.$ θ^{2}), shows that

$$
\begin{equation*}
d \alpha=K \Theta^{1} \wedge \Theta^{2} \tag{6}
\end{equation*}
$$

Again, this equation can be turned around and taken as a definition of K. Equations 5 and 6 are the basic equations of Riemannian surface theory from Cartan's point of view.
Exercise 3. Using $d^{2} \Theta^{i}=0$, show that equation 5 implies that $d \alpha$ has the form of equation 6, i.e. that it has no $\alpha \wedge \Theta^{i}$ terms.
Exercise 4. Using $d^{2} \alpha=0$ and equation 5, show that K as defined by equation 6 must be a function on Q.

