Riemannian geometry.

Immediate Goals: Cartan’s structure formulae for Riemannian surfaces, and embedded
surfaces. Connections. Curvature. The frame bundle of the homogeneous surfaces as Lie
groups.

Longer term goals. Cartan’s structure formulae for Riemannian manifolds. Levi-Civita
connection and curvature. Laplacian A. Space forms.

Starting example. Let M? C R3 be an embedded surface. Then the induced metric on
M? is obtained by taking the standard inner product on R3 and restricting it to the tangent
planes T;, M C R? to the surface. In this way we obtain a smoothly varying inner product
on the tangent bundle of M: a Riemannian metric.

REVIEW THE DEFINITION OF A RIEMANNIAN METRIC.

Terminology and notation. The Riemannian metric is variously called the“first funda-
mental form” (denoted I), the “squared element of arc length” (denoted ds?) the ‘metric
tensor’ or simply “metric” (denoted g;;). and is also written (-,-),,, m € M to suggest a
smoothly varying inner product.

Coordinate version; Gauss’ notation: #: U C R? — M?. Then ds?> = d7 - d¥. Take (u,v)
coordinates for the planar domain U C R? so that (u,v) are coordinates of M. Then Gauss
wrote:

ds® = E(u,v)du® + 2F (u,v)dudv + G (u, v)dv?. (1)

Thus; E = &, - Ty, F = @y - Zy, G = &, - . (Subscripts denote partial derivatives here.) In
gij notation: g1 = E,glg =F= ga1, G = g22.

Exercise 0.1. . Standard spherical coordinates on M? = S?, the unit two-sphere, are

7(0, ¢) = (cos() sin(e), sin() sin(p), cos(¢)). Compute that di - d¥ = d¢? + sin®(¢)d6?

This is a good time to recall some basic linear algebra: that of quadratic forms.
Let V be a real finite-dimensional vector space. Then there is a canonical bijection between
quadratic forms (= homogeneous quadratic polynomials) on V and bilinear symmetric forms
(“inner products”) (-,-) : V. x V — R. In one direction this isomorphism sends a bilinear
symmetric form §(:,-) to the quadratic form v — B(v,v) := Qg(v). In the other direction
we use polarization. If @ came from a f§ (think ‘dot product’) one can ‘polarize’ to solve;
Blv,w) = HQ+w) — Qv — w))

If coordinates , ie. a basis {e;} is chosen on V then both § and @ are given by a symmetric
matrix B;; = Bj; where 8;; = B(e;,e;). Verify that Q(v) = X, ;8;v07 with v = Lvle;.

Recall : signature, rank.

Recall: 8 is an inner product if and only if Q(v) > 0 whenever v # 0.

Define the symmetric product ® of one-forms, say, 8,v by 0 Ov = %(9 RU4+reb). Asa
bilinear symmetric form 6 ® v : (v, w) = 3(0(v)v(w) + (w)v(v)) while as a quadratic form
OOv v 0(v)n(v). Then if 6" is the dual basis to {e;} we have that 3 = £3;;6°®67. Note:
following completely standard notation we write du?, dv?, dudv for du ® du, dv ® dv, du ® dv
and with this notation (du 4 dv)? = du? + 2du ® dv + dv? as it should be.

Graham-Schmidt algorithm = completing the square implies every positive definite inner
product B can be written as a sum of squares: 3 = (%)

1. FRAMES AND COFRAMES.

The Graham-Schmidt procedure is smooth in the components of the metric. As a conse-
quence, by applying GS to a coordinate frame we can obtain a new frame {ej,e2} , defined
on the same coordinate neighborhood , which is everywhere orthonormal :

{er(m), ex(m))m = 1, {e1(m), e2(m))m = 0, {ea(m), ea(m))m =1
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Exercise 1.1. Verify that if we apply GS to the coordinate basis %, % associated to Gauss’
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form (1) then we get a smooth frame ey, ey. (Express ei, ez in terms of E, F,G and %, 5o

Argue the resulting vector fields are smooth.)

Exercise 1.2. Let Ei, Ey be a frame field and 0',0% the dual coframe field. Show that
E1, By is orthonormal if and only if ds* = (61)% + (62)2.

Suppose now that M is oriented. Then we can insist that our frame and hence our
coframe are oriented. When we do so, the area form of M is

dA = 0" N6
and is globally defined, even though neither #' or 6 are globally defined. In this case, we

call 61,02 an oriented orthonormal coframe.

Exercise 1.3. Let M C R3 be an oriented surface with unit normal vector N Show that
the two-form Q = indx A dy A dz restricted to M is the area form dA on M. Hint: show
that if U, € T,,, M then Q(U,W) = N - (T x @)..

Exercise 1.4. Suppose that 0',0% is an oriented orthonormal coframe for M?,ds? defined
on a neighborhood V. C M. Show that the pair of one-forms 0,62, also defined on U, is also
an oriented orthonormal coframe if and only if there is a circle-valued function ¢ : V — S
such that on V. we have that:

0! = cos(1)0" + sin(¢)H?
0% = —sin(¢)0" + cos(1))6?
Corollary 1.5. The space of oriented orthonormal coframes on a Riemannian surface

M, ds? forms a circle bundle over M

2. STRUCTURE EQNS

Here is a differential forms based algorithm for computing the Gauss curvature K of a
Riemannian surface M2, ds?.

Step 1. Find an oriented orthonormal coframe 6, 62: ds? = (6%)? + (%), dA = 0 A 62,

Step 2. Solve the linear equation

dot = w A 6?2
do? = —w A 6"

. for the one-form w.
Step 3. Define the function K by

dw = —K0' A 62

The equations of step 2 and 3 are called the Cartan structure equations for (M, ds?).
We have discussed step 1 in detail above.
REGARDING STEP 2.

Exercise 2.1. Given the coframe 0,0 of step 1, show that the eq. of step 2 uniquely
determines w

This one-form w is called the “connection one-form” associated to the choice of frame.

Exercise 2.2. Show that if 8%, 0% is another oriented orthonormal coframe then its connec-
tion one-form w is given by w = w + di with ¢ as in exercise 1.4.

Exercise 2.3. Show that K does not depend on the orientation. If we reverse the orienta-
tion of M then K remains unchanged. In particular M does not need to be oriented for the
Gaussian curvature to be defined.
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Exercise 2.4. Compute the Cartan structure equations and find the Gaussian curvature K
in the following two cases:

(a) ds? = dr* + f(r)*d6*

(b) ds® = \u, v)?(du® + dv?)
da?+dy?
yQ

Exercise 2.6. Find f as in (a) of exer 2.4 such that K = —1 and f has first order Taylor
ezpansion f(r) =r + O(r?).

Exercise 2.5. Compute the curvature for ds*> =



