Riemannian geometry.
Immediate Goals: Cartan's structure formulae for Riemannian surfaces, and embedded surfaces. Connections. Curvature. The frame bundle of the homogeneous surfaces as Lie groups.

Longer term goals. Cartan's structure formulae for Riemannian manifolds. Levi-Civita connection and curvature. Laplacian $\Delta$. Space forms.

Starting example. Let $M^{2} \subset \mathbb{R}^{3}$ be an embedded surface. Then the induced metric on $M^{2}$ is obtained by taking the standard inner product on $\mathbb{R}^{3}$ and restricting it to the tangent planes $T_{m} M \subset \mathbb{R}^{3}$ to the surface. In this way we obtain a smoothly varying inner product on the tangent bundle of $M$ : a Riemannian metric.

Review the definition of a Riemannian metric.
Terminology and notation. The Riemannian metric is variously called the "first fundamental form" (denoted $I$ ), the "squared element of arc length" (denoted $d s^{2}$ ) the 'metric tensor' or simply "metric" (denoted $g_{i j}$ ). and is also written $\langle\cdot, \cdot\rangle_{m}, m \in M$ to suggest a smoothly varying inner product.

Coordinate version; Gauss' notation: $\vec{x}: U \subset \mathbb{R}^{2} \rightarrow M^{2}$. Then $d s^{2}=d \vec{x} \cdot d \vec{x}$. Take $(u, v)$ coordinates for the planar domain $U \subset \mathbb{R}^{2}$ so that $(u, v)$ are coordinates of $M$. Then Gauss wrote:

$$
\begin{equation*}
d s^{2}=E(u, v) d u^{2}+2 F(u, v) d u d v+G(u, v) d v^{2} . \tag{1}
\end{equation*}
$$

Thus; $E=\vec{x}_{u} \cdot \vec{x}_{u}, F=\vec{x}_{u} \cdot \vec{x}_{v}, G=\vec{x}_{v} \cdot \vec{x}_{v}$. (Subscripts denote partial derivatives here.) In $g_{i j}$ notation: $g_{11}=E, g_{12}=F=g_{21}, G=g_{22}$.

Exercise 0.1. . Standard spherical coordinates on $M^{2}=S^{2}$, the unit two-sphere, are $\vec{x}(\theta, \phi)=(\cos (\theta) \sin (\phi), \sin (\theta) \sin (\phi), \cos (\phi))$. Compute that $d \vec{x} \cdot d \vec{x}=d \phi^{2}+\sin ^{2}(\phi) d \theta^{2}$

This is a good time to recall some basic linear algebra: that of quadratic forms. Let $\mathbb{V}$ be a real finite-dimensional vector space. Then there is a canonical bijection between quadratic forms ( $=$ homogeneous quadratic polynomials) on $\mathbb{V}$ and bilinear symmetric forms ("inner products") $\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$. In one direction this isomorphism sends a bilinear symmetric form $\beta(\cdot, \cdot)$ to the quadratic form $v \mapsto \beta(v, v):=Q_{\beta}(v)$. In the other direction we use polarization. If $Q$ came from a $\beta$ (think 'dot product') one can 'polarize' to solve; $\beta(v, w)=\frac{1}{4}(Q(v+w)-Q(v-w))$

If coordinates, ie. a basis $\left\{e_{i}\right\}$ is chosen on $\mathbb{V}$ then both $\beta$ and $Q$ are given by a symmetric matrix $\beta_{i j}=\beta_{j i}$ where $\beta_{i j}=\beta\left(e_{i}, e_{j}\right)$. Verify that $Q(v)=\Sigma_{i, j} \beta_{i j} v^{i} v^{j}$ with $v=\Sigma v^{i} e_{i}$.

Recall: signature, rank.
Recall: $\beta$ is an inner product if and only if $Q(v)>0$ whenever $v \neq 0$.
Define the symmetric product $\odot$ of one-forms, say, $\theta, \nu$ by $\theta \odot \nu=\frac{1}{2}(\theta \otimes \nu+\nu \otimes \theta)$. As a bilinear symmetric form $\theta \odot \nu:(v, w) \mapsto \frac{1}{2}(\theta(v) \nu(w)+\theta(w) \nu(v))$ while as a quadratic form $\theta \odot \nu: v \mapsto \theta(v) \eta(v)$. Then if $\theta^{i}$ is the dual basis to $\left\{e_{i}\right\}$ we have that $\beta=\Sigma \beta_{i j} \theta^{i} \odot \theta^{j}$. Note: following completely standard notation we write $d u^{2}, d v^{2}, d u d v$ for $d u \odot d u, d v \odot d v, d u \odot d v$ and with this notation $(d u+d v)^{2}=d u^{2}+2 d u \odot d v+d v^{2}$ as it should be.

Graham-Schmidt algorithm $=$ completing the square implies every positive definite inner product $\beta$ can be written as a sum of squares: $\beta=\Sigma\left(\theta^{i}\right)^{2}$.

## 1. Frames and coframes.

The Graham-Schmidt procedure is smooth in the components of the metric. As a consequence, by applying GS to a coordinate frame we can obtain a new frame $\left\{e_{1}, e_{2}\right\}$, defined on the same coordinate neighborhood, which is everywhere orthonormal :

$$
\left\langle e_{1}(m), e_{1}(m)\right\rangle_{m}=1,\left\langle e_{1}(m), e_{2}(m)\right\rangle_{m}=0,\left\langle e_{2}(m), e_{2}(m)\right\rangle_{m}=1
$$

Exercise 1.1. Verify that if we apply GS to the coordinate basis $\frac{\partial}{\partial u}, \frac{\partial}{\partial v}$ associated to Gauss, form (1) then we get a smooth frame $e_{1}, e_{2}$. (Express $e_{1}, e_{2}$ in terms of $E, F, G$ and $\frac{\partial}{\partial u}, \frac{\partial}{\partial v}$. Argue the resulting vector fields are smooth.)
Exercise 1.2. Let $E_{1}, E_{2}$ be a frame field and $\theta^{1}, \theta^{2}$ the dual coframe field. Show that $E_{1}, E_{2}$ is orthonormal if and only if $d s^{2}=\left(\theta^{1}\right)^{2}+\left(\theta^{2}\right)^{2}$.

Suppose now that $M$ is oriented. Then we can insist that our frame and hence our coframe are oriented. When we do so, the area form of $M$ is

$$
d A=\theta^{1} \wedge \theta^{2}
$$

and is globally defined, even though neither $\theta^{1}$ or $\theta^{2}$ are globally defined. In this case, we call $\theta^{1}, \theta^{2}$ an oriented orthonormal coframe.

Exercise 1.3. Let $M \subset \mathbb{R}^{3}$ be an oriented surface with unit normal vector $\mathbf{N}$ Show that the two-form $\Omega=i_{\mathbf{N}} d x \wedge d y \wedge d z$ restricted to $M$ is the area form $d A$ on $M$. Hint: show that if $\vec{v}, \vec{w} \in T_{m} M$ then $\Omega(\vec{v}, \vec{w})=\vec{N} \cdot(\vec{v} \times \vec{w})$.
Exercise 1.4. Suppose that $\theta^{1}, \theta^{2}$ is an oriented orthonormal coframe for $M^{2}, d s^{2}$ defined on a neighborhood $V \subset M$. Show that the pair of one-forms $\bar{\theta}^{1}, \bar{\theta}^{2}$, also defined on $U$, is also an oriented orthonormal coframe if and only if there is a circle-valued function $\psi: V \rightarrow S^{1}$ such that on $V$ we have that:

$$
\begin{gathered}
\bar{\theta}^{1}=\cos (\psi) \theta^{1}+\sin (\psi) \theta^{2} \\
\bar{\theta}^{2}=-\sin (\psi) \theta^{1}+\cos (\psi) \theta^{2}
\end{gathered}
$$

Corollary 1.5. The space of oriented orthonormal coframes on a Riemannian surface $M, d s^{2}$ forms a circle bundle over $M$

## 2. Structure EQNS

Here is a differential forms based algorithm for computing the Gauss curvature $K$ of a Riemannian surface $M^{2}, d s^{2}$.

Step 1. Find an oriented orthonormal coframe $\theta^{1}, \theta^{2}: d s^{2}=\left(\theta^{1}\right)^{2}+\left(\theta^{2}\right)^{2}, d A=\theta^{1} \wedge \theta^{2}$.
Step 2. Solve the linear equation

$$
\begin{gathered}
d \theta^{1}=\omega \wedge \theta^{2} \\
d \theta^{2}=-\omega \wedge \theta^{1}
\end{gathered}
$$

. for the one-form $\omega$.
Step 3. Define the function $K$ by

$$
d \omega=-K \theta^{1} \wedge \theta^{2}
$$

The equations of step 2 and 3 are called the Cartan structure equations for $\left(M, d s^{2}\right)$.
We have discussed step 1 in detail above.
Regarding step 2.
Exercise 2.1. Given the coframe $\theta^{1}, \theta^{2}$ of step 1, show that the eq. of step 2 uniquely determines $\omega$

This one-form $\omega$ is called the "connection one-form" associated to the choice of frame.
Exercise 2.2. Show that if $\bar{\theta}^{1}, \bar{\theta}^{2}$ is another oriented orthonormal coframe then its connection one-form $\bar{\omega}$ is given by $\bar{\omega}=\omega+d \psi$ with $\psi$ as in exercise 1.4.

Exercise 2.3. Show that $K$ does not depend on the orientation. If we reverse the orientation of $M$ then $K$ remains unchanged. In particular $M$ does not need to be oriented for the Gaussian curvature to be defined.

Exercise 2.4. Compute the Cartan structure equations and find the Gaussian curvature $K$ in the following two cases:
(a) $\quad d s^{2}=d r^{2}+f(r)^{2} d \theta^{2}$
(b) $\quad d s^{2}=\lambda(u, v)^{2}\left(d u^{2}+d v^{2}\right)$

Exercise 2.5. Compute the curvature for $d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}$
Exercise 2.6. Find $f$ as in (a) of exer 2.4 such that $K=-1$ and $f$ has first order Taylor expansion $f(r)=r+O\left(r^{2}\right)$.

