
Riemannian geometry.
Immediate Goals: Cartan’s structure formulae for Riemannian surfaces, and embedded

surfaces. Connections. Curvature. The frame bundle of the homogeneous surfaces as Lie
groups.

Longer term goals. Cartan’s structure formulae for Riemannian manifolds. Levi-Civita
connection and curvature. Laplacian ∆. Space forms.

Starting example. Let M2 ⊂ R3 be an embedded surface. Then the induced metric on
M2 is obtained by taking the standard inner product on R3 and restricting it to the tangent
planes TmM ⊂ R3 to the surface. In this way we obtain a smoothly varying inner product
on the tangent bundle of M : a Riemannian metric.

Review the definition of a Riemannian metric.
Terminology and notation. The Riemannian metric is variously called the“first funda-

mental form” (denoted I), the “squared element of arc length” (denoted ds2) the ‘metric
tensor’ or simply “metric” (denoted gij). and is also written 〈·, ·〉m, m ∈ M to suggest a
smoothly varying inner product.

Coordinate version; Gauss’ notation: ~x : U ⊂ R2 →M2. Then ds2 = d~x · d~x. Take (u, v)
coordinates for the planar domain U ⊂ R2 so that (u, v) are coordinates of M . Then Gauss
wrote:

ds2 = E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2. (1)

Thus; E = ~xu · ~xu, F = ~xu · ~xv, G = ~xv · ~xv. (Subscripts denote partial derivatives here.) In
gij notation: g11 = E, g12 = F = g21, G = g22.

Exercise 0.1. . Standard spherical coordinates on M2 = S2, the unit two-sphere, are
~x(θ, φ) = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)). Compute that d~x · d~x = dφ2 + sin2(φ)dθ2

This is a good time to recall some basic linear algebra: that of quadratic forms.
Let V be a real finite-dimensional vector space. Then there is a canonical bijection between
quadratic forms (= homogeneous quadratic polynomials) on V and bilinear symmetric forms
(“inner products”) 〈·, ·〉 : V × V → R. In one direction this isomorphism sends a bilinear
symmetric form β(·, ·) to the quadratic form v 7→ β(v, v) := Qβ(v). In the other direction
we use polarization. If Q came from a β (think ‘dot product’) one can ‘polarize’ to solve;
β(v, w) = 1

4(Q(v + w)−Q(v − w))
If coordinates , ie. a basis {ei} is chosen on V then both β and Q are given by a symmetric

matrix βij = βji where βij = β(ei, ej). Verify that Q(v) = Σi,jβijv
ivj with v = Σviei.

Recall : signature, rank.
Recall: β is an inner product if and only if Q(v) > 0 whenever v 6= 0.
Define the symmetric product � of one-forms, say, θ, ν by θ� ν = 1

2(θ⊗ ν + ν ⊗ θ). As a

bilinear symmetric form θ� ν : (v, w) 7→ 1
2(θ(v)ν(w) + θ(w)ν(v)) while as a quadratic form

θ�ν : v 7→ θ(v)η(v). Then if θi is the dual basis to {ei} we have that β = Σβijθ
i�θj . Note:

following completely standard notation we write du2, dv2, dudv for du�du, dv�dv, du�dv
and with this notation (du+ dv)2 = du2 + 2du� dv + dv2 as it should be.

Graham-Schmidt algorithm = completing the square implies every positive definite inner
product β can be written as a sum of squares: β = Σ(θi)2.

1. Frames and coframes.

The Graham-Schmidt procedure is smooth in the components of the metric. As a conse-
quence, by applying GS to a coordinate frame we can obtain a new frame {e1, e2} , defined
on the same coordinate neighborhood , which is everywhere orthonormal :

〈e1(m), e1(m)〉m = 1, 〈e1(m), e2(m)〉m = 0, 〈e2(m), e2(m)〉m = 1
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Exercise 1.1. Verify that if we apply GS to the coordinate basis ∂
∂u ,

∂
∂v associated to Gauss’

form (1) then we get a smooth frame e1, e2. (Express e1, e2 in terms of E,F,G and ∂
∂u ,

∂
∂v .

Argue the resulting vector fields are smooth.)

Exercise 1.2. Let E1, E2 be a frame field and θ1, θ2 the dual coframe field. Show that
E1, E2 is orthonormal if and only if ds2 = (θ1)2 + (θ2)2.

Suppose now that M is oriented. Then we can insist that our frame and hence our
coframe are oriented. When we do so, the area form of M is

dA = θ1 ∧ θ2

and is globally defined, even though neither θ1 or θ2 are globally defined. In this case, we
call θ1, θ2 an oriented orthonormal coframe.

Exercise 1.3. Let M ⊂ R3 be an oriented surface with unit normal vector N Show that
the two-form Ω = iNdx ∧ dy ∧ dz restricted to M is the area form dA on M . Hint: show

that if ~v, ~w ∈ TmM then Ω(~v, ~w) = ~N · (~v × ~w)..

Exercise 1.4. Suppose that θ1, θ2 is an oriented orthonormal coframe for M2, ds2 defined
on a neighborhood V ⊂M . Show that the pair of one-forms θ̄1, θ̄2, also defined on U , is also
an oriented orthonormal coframe if and only if there is a circle-valued function ψ : V → S1

such that on V we have that:

θ̄1 = cos(ψ)θ1 + sin(ψ)θ2

θ̄2 = − sin(ψ)θ1 + cos(ψ)θ2

Corollary 1.5. The space of oriented orthonormal coframes on a Riemannian surface
M,ds2 forms a circle bundle over M

2. Structure eqns

Here is a differential forms based algorithm for computing the Gauss curvature K of a
Riemannian surface M2, ds2.

Step 1. Find an oriented orthonormal coframe θ1, θ2: ds2 = (θ1)2 + (θ2)2, dA = θ1 ∧ θ2.
Step 2. Solve the linear equation

dθ1 = ω ∧ θ2

dθ2 = −ω ∧ θ1

. for the one-form ω.
Step 3. Define the function K by

dω = −Kθ1 ∧ θ2

.
The equations of step 2 and 3 are called the Cartan structure equations for (M,ds2).
We have discussed step 1 in detail above.
Regarding step 2.

Exercise 2.1. Given the coframe θ1, θ2 of step 1, show that the eq. of step 2 uniquely
determines ω

This one-form ω is called the “connection one-form” associated to the choice of frame.

Exercise 2.2. Show that if θ̄1, θ̄2 is another oriented orthonormal coframe then its connec-
tion one-form ω̄ is given by ω̄ = ω + dψ with ψ as in exercise 1.4.

Exercise 2.3. Show that K does not depend on the orientation. If we reverse the orienta-
tion of M then K remains unchanged. In particular M does not need to be oriented for the
Gaussian curvature to be defined.
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Exercise 2.4. Compute the Cartan structure equations and find the Gaussian curvature K
in the following two cases:

(a) ds2 = dr2 + f(r)2dθ2

(b) ds2 = λ(u, v)2(du2 + dv2)

Exercise 2.5. Compute the curvature for ds2 = dx2+dy2

y2

Exercise 2.6. Find f as in (a) of exer 2.4 such that K = −1 and f has first order Taylor
expansion f(r) = r +O(r2).


