A DIFFERENTIAL FORMS DERIVATION OF THE THEOREM EGREGIUM: in the guise $K=\operatorname{det}(d N)$.

Taken from chapter 7 of Élie Cartan's book: "Les sytèmus différentiels extérieurs et leurs applications géométriques".

We consider a moving orthonormal frame: a "trihedron' defined in a neighborhood of a surface : e_{1}, e_{2}, e_{3} with e_{3} the normal vector N and so e_{1}, e_{2} tangent to the surface. We are surprising the point $A \in M^{2} \subset \mathbb{R}^{3}$ at which the frame is attached: $e_{i}=e_{i}(A)$.

Suppose that $A \in \mathbb{R}^{3}$ represents the point where the frame is attached.
Now differentiate both A and the frame to get: ${ }^{1}$

$$
\begin{align*}
& d A=\Sigma \theta^{i} e_{i} \tag{1}\\
& d e_{i}=\Sigma \omega_{i}^{j} e_{j} \tag{2}
\end{align*}
$$

In the first equation θ^{i} is the dual coframe ${ }^{2}$ to e_{i}. This, to me, is weird! $\Sigma \theta^{i} e_{i}=\Sigma \theta^{i} \otimes e_{i}$ is the expansion of the identity matrix. How is it that we "differentiate the moving point" A and get the identity matrix? Think of A as the map: $A \mapsto A$: the identity map of \mathbb{R}^{3}. Its derivative $d A$ is again the identity, but now viewed as a one-form on \mathbb{R}^{3} with values in \mathbb{R}^{3} - it is the constant identity-valued one-form!

In class we showed that the ω_{j}^{i} of the second equation is skew-symmetric in i and j : $\omega_{j}^{i}=-\omega_{i}^{j}$ and that this follows immediately from $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}=$ const..

Now differentiate these equations, using $d^{2}=0$, also valid for vector-valued forms like $d A$. We will use the summation convention over repeated indices without further ado. From $d^{2} A=0$ we see that

$$
\begin{align*}
0 & =d\left(\theta^{i} e_{i}\right) \tag{3}\\
& =d \theta^{i} e_{i}+\theta^{i} d e_{i} \tag{4}\\
& =d \theta^{i} e_{i}+\theta^{i} \omega_{i}^{j} e_{j} \tag{5}\\
& =d \theta^{i} e_{i}+\theta^{k} \omega_{k}^{i} e_{i} \tag{6}\\
& =\left(d \theta^{i}-\omega_{k}^{i} \wedge \theta^{k}\right) e_{k} \tag{7}
\end{align*}
$$

Now since the e_{k} form a basis we must have

$$
\begin{equation*}
d \theta^{i}=\omega_{k}^{i} \wedge \theta^{k} \tag{8}
\end{equation*}
$$

(I got stuck at the end of last lecture trying to derive this equation. I tried to prove this a different way. Continuing to the consequences of $d^{2} e_{i}=0$ we find

$$
\begin{align*}
0 & =d\left(\omega_{i}^{j} e_{j}\right) \tag{9}\\
& =d \omega_{i}^{j} e_{j}+\omega_{i}^{j} d e_{j} \tag{10}\\
& =d \omega_{i}^{j} e_{j}+\omega_{i}^{j} \omega_{j}^{k} e_{k} \tag{11}\\
& =d \omega_{i}^{k} e_{k}+\omega_{i}^{j} \omega_{j}^{k} e_{k} \tag{12}\\
& =\left(d \omega_{i}^{k}+\omega_{i}^{j} \omega_{j}^{k}\right) e_{k} \tag{13}
\end{align*}
$$

so that

$$
\begin{equation*}
d \omega_{i}^{k}=-\omega_{i}^{j} \wedge \omega_{j}^{k} \tag{14}
\end{equation*}
$$

[^0]Now let $f: M^{2} \rightarrow \mathbb{R}^{3}$ be the inclusion. We pull the structure equations back to the surface M using f. The main consequence of pull back is that $f^{*} \theta^{3}=0=f^{*} d \theta^{3}$. We find

$$
\begin{align*}
d \theta^{1} & =\omega_{2}^{1} \wedge \theta^{2} \tag{15}\\
d \theta^{2} & =\omega_{1}^{2} \wedge \theta^{1} \tag{16}\\
0=\omega_{1}^{3} \wedge \theta^{1}+\omega_{2}^{3} \wedge \theta^{2} & \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
d \omega_{2}^{1}=-\omega_{2}^{3} \wedge \omega_{3}^{1} \tag{18}
\end{equation*}
$$

Comparing eqns (15) and (16) with the earlier set of eqns $d \theta^{1}=\omega \wedge \theta^{2}$ and $d \theta^{2}=-\omega \wedge \theta^{1}$ we see that

$$
\begin{equation*}
\omega_{2}^{1}=\omega \tag{21}
\end{equation*}
$$

Use this fact and eq (18) compared to $d \omega=-K \theta^{1} \wedge \theta^{2}$ to get that

$$
\begin{align*}
K & =d \omega_{2}^{1}\left(e_{2}, e_{1}\right) \tag{22}\\
& =-\omega_{2}^{3} \wedge \omega_{3}^{1}\left(e_{2}, e_{1}\right) \tag{23}\\
& =\omega_{2}^{3} \wedge \omega_{3}^{1}\left(e_{1}, e_{2}\right) \tag{24}\\
& =\omega_{2}^{3}\left(e_{1}\right) \omega_{3}^{1}\left(e_{2}\right)-\omega_{2}^{3}\left(e_{2}\right) \omega_{3}^{1}\left(e_{1}\right) \tag{25}\\
& =\operatorname{det}(M) \tag{26}
\end{align*}
$$

where

$$
M=\left(\begin{array}{ll}
\omega_{2}^{3}\left(e_{1}\right) & \omega_{3}^{1}\left(e_{1}\right) \\
\omega_{2}^{3}\left(e_{2}\right) & \omega_{3}^{1}\left(e_{2}\right)
\end{array}\right)
$$

We will be done once we relate M to $d N$. Since $N=e_{3}$ we have from eq (2) that

$$
\begin{equation*}
d N=\omega_{3}^{1} e_{1}+\omega_{3}^{2} e_{2} \tag{27}
\end{equation*}
$$

Hence the matrix of $d N$ relative to the e_{1}, e_{2} basis is

$$
d N=\left(\begin{array}{cc}
\omega_{3}^{1}\left(e_{1}\right) & \omega_{3}^{1}\left(e_{2}\right) \\
\omega_{3}^{2}\left(e_{1}\right) & \omega_{3}^{2}\left(e_{2}\right)
\end{array}\right)
$$

Using $\omega_{j}^{i}=-\omega_{i}^{j}$ we see that indeed the determinant of $d N$ equals that of M. QED

[^0]: ${ }^{1}$ Cartan viewed such a trihedron as being intimately linked to the group of Euclidean motions Then you can think of $0 \mapsto A$ as a translation. We can think of e_{1}, e_{2}, e_{3} as being the columns of a matrix which describes how to rotate the standard xyz axes attached to 0 to axes parallel to $e_{1}(A), e_{2}(A), e_{3}(A)$ now attached at A.
 $2_{\text {so that }} \theta^{i}(A)(V)=\left\langle e_{i}(A), v\right\rangle$.

