
A DIFFERENTIAL FORMS DERIVATION OF THE THEOREM EGREGIUM: in the
guise K = det(dN).

Taken from chapter 7 of Élie Cartan’s book: “Les sytèmus différentiels
extérieurs et leurs applications géométriques”.

We consider a moving orthonormal frame: a “trihedron’ defined in a neighborhood of a
surface : e1, e2, e3 with e3 the normal vector N and so e1, e2 tangent to the surface. We are
surprising the point A ∈M2 ⊂ R3 at which the frame is attached: ei = ei(A).

Suppose that A ∈ R3 represents the point where the frame is attached.
Now differentiate both A and the frame to get: 1

dA = Σθiei (1)

dei = Σωj
i ej (2)

In the first equation θi is the dual coframe 2 to ei. This, to me, is weird! Σθiei = Σθi⊗ei
is the expansion of the identity matrix. How is it that we “differentiate the moving point”
A and get the identity matrix? Think of A as the map: A 7→ A: the identity map of R3.
Its derivative dA is again the identity, but now viewed as a one-form on R3 with values in
R3 – it is the constant identity-valued one-form!

In class we showed that the ωi
j of the second equation is skew-symmetric in i and j:

ωi
j = −ωj

i and that this follows immediately from 〈ei, ej〉 = δij = const..

Now differentiate these equations, using d2 = 0, also valid for vector-valued forms like
dA. We will use the summation convention over repeated indices without further ado. From
d2A = 0 we see that

0 = d(θiei) (3)

= dθiei + θidei (4)

= dθiei + θiωj
i ej (5)

= dθiei + θkωi
kei (6)

= (dθi − ωi
k ∧ θk)ek (7)

Now since the ek form a basis we must have

dθi = ωi
k ∧ θk (8)

(I got stuck at the end of last lecture trying to derive this equation. I tried to prove this a
different way. Continuing to the consequences of d2ei = 0 we find

0 = d(ωj
i ej) (9)

= dωj
i ej + ωj

i dej (10)

= dωj
i ej + ωj

iω
k
j ek (11)

= dωk
i ek + ωj

iω
k
j ek (12)

= (dωk
i + ωj

iω
k
j )ek (13)

so that

dωk
i = −ωj

i ∧ ω
k
j (14)

1Cartan viewed such a trihedron as being intimately linked to the group of Euclidean motions Then you
can think of 0 7→ A as a translation. We can think of e1, e2, e3 as being the columns of a matrix which
describes how to rotate the standard xyz axes attached to 0 to axes parallel to e1(A), e2(A), e3(A) now
attached at A.

2so that θi(A)(V ) = 〈ei(A), v〉.
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Now let f : M2 → R3 be the inclusion. We pull the structure equations back to the
surface M using f . The main consequence of pull back is that f∗θ3 = 0 = f∗dθ3. We find

dθ1 = ω1
2 ∧ θ2 (15)

dθ2 = ω2
1 ∧ θ1 (16)

0 = ω3
1 ∧ θ1 + ω3

2 ∧ θ2 (17)

(18)

and

dω1
2 = −ω3

2 ∧ ω1
3 (19)

(20)

Comparing eqns (15) and (16) with the earlier set of eqns dθ1 = ω∧θ2 and dθ2 = −ω∧θ1
we see that

ω1
2 = ω (21)

Use this fact and eq (18) compared to dω = −Kθ1 ∧ θ2 to get that

K = dω1
2(e2, e1) (22)

= −ω3
2 ∧ ω1

3(e2, e1) (23)

= ω3
2 ∧ ω1

3(e1, e2) (24)

= ω3
2(e1)ω

1
3(e2)− ω3

2(e2)ω
1
3(e1) (25)

= det(M) (26)

where

M =

(
ω3
2(e1) ω1

3(e1)
ω3
2(e2) ω1

3(e2)

)
We will be done once we relate M to dN . Since N = e3 we have from eq (2) that

dN = ω1
3e1 + ω2

3e2 (27)

Hence the matrix of dN relative to the e1, e2 basis is

dN =

(
ω1
3(e1) ω1

3(e2)
ω2
3(e1) ω2

3(e2)

)
Using ωi

j = −ωj
i we see that indeed the determinant of dN equals that of M .

QED


