§5. ORIENTED MANIFOLDS

In order to define the degree as an integer (rather than an integer modulo 2) we must introduce orientations.

DEFINITIONS. An orientation for a finite dimensional real vector space is an equivalence class of ordered bases as follows: the ordered basis (b_1, \dots, b_n) determines the same orientation as the basis (b'_1, \dots, b'_n) if $b'_i = \sum a_{i,i}b_i$ with $\det(a_{i,i}) > 0$. It determines the opposite orientation if $\det(a_{i,i}) < 0$. Thus each positive dimensional vector space has precisely two orientations. The vector space R^n has a standard orientation corresponding to the basis $(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1)$.

In the case of the zero dimensional vector space it is convenient to define an "orientation" as the symbol +1 or -1.

An oriented smooth manifold consists of a manifold M together with a choice of orientation for each tangent space TM_x . If $m \geq 1$, these are required to fit together as follows: For each point of M there should exist a neighborhood $U \subset M$ and a diffeomorphism h mapping U onto an open subset of R^m or H^m which is orientation preserving, in the sense that for each $x \in U$ the isomorphism dh_x carries the specified orientation for TM_x into the standard orientation for R^m .

If M is connected and orientable, then it has precisely two orientations.

If M has a boundary, we can distinguish three kinds of vectors in the tangent space TM_z at a boundary point:

- 1) there are the vectors tangent to the boundary, forming an (m-1)-dimensional subspace $T(\partial M)_x \subset TM_x$;
- 2) there are the "outward" vectors, forming an open half space bounded by $T(\partial M)_x$;
- 3) there are the "inward" vectors forming a complementary half space.

Each orientation for M determines an orientation for ∂M as follows: For $x \in \partial M$ choose a positively oriented basis (v_1, v_2, \dots, v_m) for TM_x in such a way that v_2, \dots, v_m are tangent to the boundary (assuming that $m \geq 2$) and that v_1 is an "outward" vector. Then (v_2, \dots, v_m) determines the required orientation for ∂M at x.

If the dimension of M is 1, then each boundary point x is assigned the orientation -1 or +1 according as a positively oriented vector at x points inward or outward. (See Figure 8.)

Figure 8. How to orient a boundary

As an example the unit sphere $S^{m-1} \subset R^m$ can be oriented as the boundary of the disk D^m .

THE BROUWER DEGREE

Now let M and N be oriented n-dimensional manifolds without boundary and let

$$f:M\to N$$

be a smooth map. If M is compact and N is connected, then the degree of f is defined as follows:

Let $x \in M$ be a regular point of f, so that $df_x : TM_x \to TN_{f(x)}$ is a linear isomorphism between oriented vector spaces. Define the sign of df_x to be +1 or -1 according as df_x preserves or reverses orientation. For any regular value $y \in N$ define

$$\deg(f; y) = \sum_{x \in f^{-1}(y)} \operatorname{sign} df_x.$$

As in $\S1$, this integer $\deg(f; y)$ is a locally constant function of y. It is defined on a dense open subset of N.

Theorem A. The integer deg(f; y) does not depend on the choice of regular value y.

It will be called the *degree* of f (denoted deg f).

Theorem B. If f is smoothly homotopic to g, then $\deg f = \deg g$.

The proof will be essentially the same as that in §4. It is only necessary to keep careful control of orientations.

First consider the following situation: Suppose that M is the boundary of a compact oriented manifold X and that M is oriented as the boundary of X.

Lemma 1. If $f: M \to N$ extends to a smooth map $F: X \to N$, then $\deg(f; y) = 0$ for every regular value y.

PROOF. First suppose that y is a regular value for F, as well as for $f = F \mid M$. The compact 1-manifold $F^{-1}(y)$ is a finite union of arcs and circles, with only the boundary points of the arcs lying on $M = \partial X$. Let $A \subset F^{-1}(y)$ be one of these arcs, with $\partial A = \{a\} \cup \{b\}$. We will show that

$$sign df_a + sign df_b = 0,$$

and hence (summing over all such arcs) that deg(f; y) = 0.

Figure 9. How to orient $F^{-1}(y)$

The orientations for X and N determine an orientation for A as follows: Given $x \in A$, let (v_1, \dots, v_{n+1}) be a positively oriented basis for TX_x with v_1 tangent to A. Then v_1 determines the required orientation for TA_x if and only if dF_x carries (v_2, \dots, v_{n+1}) into a positively oriented basis for TN_y .

Let $v_1(x)$ denote the positively oriented unit vector tangent to A at x. Clearly v_1 is a smooth function, and $v_1(x)$ points outward at one boundary point (say b) and inward at the other boundary point a.