Let (x, y) be standard coordinates on the plane \mathbb{R}^{2}.
Definition 0.1 A one-form on the plane is a a linear expression in the indeterminates $d x$ and dy with coefficents smooth functions. Thus a one-form is an expression of the form

$$
\alpha:=F_{1}(x, y) d x+F_{2}(x, y) d y
$$

A two-form on the surface is a linear expression in the indeterminate $d x \wedge d y$ with coefficent a smooth function. Thus a two-form has the shape

$$
\omega=G(x, y) d x \wedge d y
$$

Integrating one- forms. One-forms are the integrands for line integrals. If $c(t)=(x(t), y(t)), a \leq t \leq b$ is a smooth curve in the plane and α is a one-form as above, then

$$
\int_{c} \alpha=\int_{a}^{b} F_{1}(x(t), y(t)) \frac{d x}{d t} d t+F_{2}(x(t), y(t)) \frac{d y}{d t} d t
$$

and this integral is termed the integral of the one-form α over the curve c.
The differential.
Definition 0.2 If $f=f(x, y)$ is a smooth function on the plane then its differential is the one-form

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

The fundamental theorem of calculus reads, in the language of forms:

$$
\int_{c} d f=f(c(b))-f(c(a))
$$

Exercise 1 . Verify that the integral of a one-form is independent of coordinates. Thus, if (u, v) are another good choice of coordinates on the plane and the curve c is defined in the overlap of the (u, v) and (x, y) coordinate chart, show that $\int_{c} \alpha$ is the same, regardless of what chart you use for the computation. Use the obvious transformation rule $d x=\frac{\partial x}{\partial u} d u+\frac{\partial x}{\partial v} d v$ and similarly for $d y$ to transform between forms written in different charts.

The wedge product. The basic rule regarding the wedge product is that $d f \wedge d g=-d g \wedge d f$ where f and g are functions. Thus $d x \wedge d x=d y \wedge d y=0$. We posit that $d x \wedge d y \neq 0$ so that, as the definition above asserts, , pointwise, the space of two-forms have $d x \wedge d y$ as a basis.

We extend d to a map from one-forms to two forms by the two laws

$$
d^{2}=0
$$

and

$$
d(f \theta)=d f \wedge \theta+f d \theta
$$

Exercise $2 d(P d x+Q d y)=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x \wedge d y$.
Exercise 3 Use the previous exercise to verify that indeed $d d f=0$ for any smooth function f on the plane.

Integrating two-forms We integrate a two-form over bounded domain Ω in the plane by changing $d x \wedge d y$ to the Lebesgue integrand $d x d y$. Thus we define $\int_{\Omega} \omega=\iint_{\Omega} G(x, y) d x d y$ with $\omega=G(x, y) d x \wedge d y$ as above.
Exercise 4 . Take $\alpha=P d x+Q d y$ as per exercise 2.
Verify that Green's theorem in the plane reads

$$
\int_{\Omega} d \alpha=\int_{c} \alpha
$$

where Ω is any bounded domain in the plane whose boundary is a smooth closed curve c (Think of the unit disc whose boundary is the unit circle.)

How must c be oriented?
Looking ahead: The formula

$$
\int_{\Sigma} d \alpha=\int_{\partial \Sigma} \alpha
$$

is called Stoke's theorem and is valid for integrating smooth forms α of any degree k. The differential $d \alpha$ of a k -form is a $k+1$-form so the object over which it is to be integrated, Σ, has dimension $k+1$ and must be "oriented". The boundary $\partial \Sigma$ of this object is an oriented k-dimensional object.

Change of variables in integration Let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a change of coordinates $\Phi(u, v)=(x(u, v), y(u, v))$. We define the pull-back of forms by substituting variables and expanding out in the obvious way. Algebraically then, for a function f we have $\left(\Phi^{*} f\right)(u, v)=f(x(u, v), y(u, v))$ while for the basis one-forms we have $\Phi^{*} d x=d \Phi^{*} x=d(x(u, v))=\frac{\partial x}{\partial u} d u+\frac{\partial x}{\partial v} d v$ and similarly $\Phi^{*} d y=\frac{\partial y}{\partial u} d u+\frac{\partial y}{\partial v} d v$. Finally $\Phi^{*} \alpha \wedge \beta=\Phi^{*} \alpha \wedge \Phi^{*} \beta$ and $\Phi^{*} f \alpha=\Phi^{*} f \Phi^{*} \alpha$.
Exercise 5. $\Phi^{*} d x \wedge d y=\frac{\partial(x, y)}{\partial(u, v)} d u \wedge d v$ where $\frac{\partial(x, y)}{\partial(u, v)}$ is the Jacobian of the map $(u, v) \mapsto \Phi(x, y)=(u(x, y), v(x, y))$, which is to say, the determinant of the two-by-two derivative matrix of this transformation.
Exercise 6 Verify the change of variables formula for two-forms: $\int_{\Omega} \omega=\int_{\Phi^{-1}(\Omega)} \Phi^{*} \omega$.
Exercise 7 Verify the change of variables formula for one-forms: $\int_{\mathcal{C}} \alpha=\int_{\Phi^{-1} c} \Phi^{*} \alpha$ where $\Phi^{-1} c$ is the curve in the u-v plane parameterized as $t \mapsto \Phi^{-\mathcal{1}} \circ c(t)$
Exercise 8 Verify that line integrals are independent of parameterization: Let $\tilde{c}(\tau)=c(t(\tau))$ where $\tau \mapsto t(\tau)$ is smooth strictly monotone change of variables mapping the interval $[A, B]$ to the interval $[a, b]$ so that the new curve \tilde{c} is parameterized by $[A, B]$ Show that change of variables formula for one-forms: $\int_{\tilde{c}} \alpha=\int_{c} \alpha$

Summarizing :the integrals of one and two-forms is independent of coordinates and of parameterization.

