Let (z,y) be standard coordinates on the plane R2.

Definition 0.1 A one-form on the plane is a a linear expression in the inde-
terminates dx and dy with coefficents smooth functions. Thus a one-form is an
expression of the form

a:= Fi(z,y)dx + Fy(x,y)dy

A two-form on the surface is a linear expression in the indeterminate dz A dy
with coefficent a smooth function. Thus a two-form has the shape

w=G(z,y)dx A dy.

Integrating one- forms. One-forms are the integrands for line integrals. If
c(t) = (z(t),y(t)), a <t < bis asmooth curve in the plane and « is a one-form
as above,then

o= [ Baw.ve) s e, v

and this integral is termed the integral of the one-form « over the curve c.
The differential.

Definition 0.2 If f = f(x,y) is a smooth function on the plane then its dif-
ferential is the one-form
O gy Oy,

Oy

The fundamental theorem of calculus reads, in the language of forms:

df =

/#:ﬂdm—fwwy

Exercise 1 . Verify that the integral of a one-form is independent of coordi-
nates. Thus, if (u,v) are another good choice of coordinates on the plane and
the curve c is defined in the overlap of the (u,v) and (x,y) coordinate chart,
show that fc « 1s the same, regardless of what chart you use for the computation.
Use the obvious transformation rule dx = %du + %dv and similarly for dy to
transform between forms written in different charts.

The wedge product. The basic rule regarding the wedge product is that
df Ndg = —dg A df where f and g are functions. Thus dx A dx = dy A dy = 0.
We posit that dz A dy # 0 so that, as the definition above asserts, ,pointwise,
the space of two-forms have dx A dy as a basis.

We extend d to a map from one-forms to two forms by the two laws

=0

and

d(f6) = df A6 + fdo.



Exercise 2 d(Pdx + Qdy) = (g—g - %—1;)(1:10 Ady.

Exercise 3 Use the previous exercise to verify that indeed ddf = 0 for any
smooth function f on the plane.

Integrating two-forms We integrate a two-form over bounded domain {2
in the plane by changing dx A dy to the Lebesgue integrand dzdy. Thus we
define [,w = [ [, G(z,y)dxdy with w = G(x,y)dx A dy as above.

Exercise 4 . Taoke a = Pdx + Qdy as per exercise 2.
Verify that Green’s theorem in the plane reads

[ da=[a

where € is any bounded domain in the plane whose boundary is a smooth closed
curve ¢ (Think of the unit disc whose boundary is the unit circle.)
How must ¢ be oriented?

Looking ahead: The formula

/da:/ «
b %

is called Stoke’s theorem and is valid for integrating smooth forms « of any
degree k. The differential da of a k-form is a k + 1-form so the object over
which it is to be integrated, ¥, has dimension k£ + 1 and must be “oriented”.
The boundary 0% of this object is an oriented k-dimensional object.

Change of variables in integration Let ® : R?> — R? be a change of
coordinates ®(u,v) = (x(u,v),y(u,v)). We define the pull-back of forms by
substituting variables and expanding out in the obvious way. Algebraically
then, for a function f we have (®*f)(u,v) = f(z(u,v),y(u,v)) while for the
basis one-forms we have ®*dx = d®*z = d(z(u,v)) = g—idu—i— %dv and similarly
O dy = g—gdu + %dv. Finally ®*a A 8 = ®*a A &3 and ®* fa = &* fP*a.

Exercise 5 . ®*dx A dy = %du A dv where ggizg is the Jacobian of the

map (u,v) = ®(z,y) = (u(x,y),v(z,y)), which is to say, the determinant of
the two-by-two derivative matriz of this transformation.

Exercise 6 Verify the change of variables formula for two-forms: fQ w= f&b—l(ﬂ) d*w.
Exercise 7 Verify the change of variables formula for one-forms: [ o = f<1>_10 P o
where ®~1c is the curve in the u-v plane parameterized as t — ®~1 o c(t)

Exercise 8 Verify that line integrals are independent of parameterization: Let
é(1) = c(t(r)) where T — t(7) is smooth strictly monotone change of variables
mapping the interval [A, B] to the interval [a,b] so that the new curve é is
parameterized by [A, B] Show that change of variables formula for one-forms:

Joa=J.a

Summarizing :the integrals of one and two-forms is independent
of coordinates and of parameterization.



