Let (u, v) be local coordinates on some smooth surface Σ.
Definition 0.1 (Preliminary) A one-form on a surface is a a linear expression in the indeterminates $d u$ and $d v$ with coefficents smooth functions. Thus a one-form is an expression of the form

$$
\alpha:=F_{1}(u, v) d u+F_{2}(u, v) d v
$$

A two-form on the surface is a linear expression in the indeterminate $d u \wedge d v$ with coefficent a smooth function. Thus a two-form has the shape

$$
\omega=G(u, v) d u \wedge d v
$$

Integrating one- forms. One-forms are the integrands for line integrals. In local coordinates a curve on the surface is given by $c(t)=(u(t), v(t)), a \leq t \leq b$. Then, with α as above,

$$
\int_{c} \alpha=\int_{a}^{b} F_{1}(u(t), v(t)) \frac{d u}{d t} d t+F_{2}(u(t), v(t)) \frac{d v}{d t} d t
$$

and this integral is termed the integral of the one-form α over the curve c.
The differential.
Definition 0.2 Let $f=f(u, v)$ be a function on the surface Σ. The differential of f is the one-form

$$
d f=\frac{\partial f}{\partial u} d u+\frac{\partial f}{\partial v} d v
$$

The fundamental theorem of calculus reads, in the language of forms:

$$
\int_{c} d f=f(c(b))-f(c(a)) .
$$

Exercise 1 . Verify that the integral of a one-form is independent of coordinates. Thus, if (x, y) are other coordinates on the surface and if the curve c is defined in the overlap of the (u, v) and (x, y) coordinate chart, show that $\int_{c} \alpha$ is the same, regardless of what chart you use for the computation. Use the obvious transformation rule $d x=\frac{\partial x}{\partial u} d u+\frac{\partial x}{\partial v} d v$ and similarly for $d y$ to transform between forms written in different charts.

The wedge product. The basic rule regarding the wedge product is that $d f \wedge d g=-d g \wedge d f$ where f and g are functions. Thus $d u \wedge d u=d v \wedge d v=0$. We posit that $d u \wedge d v \neq 0$ so that, as the definition above asserts, ,pointwise, the space of two-forms have $d u \wedge d v$ as a basis.

We extend d to a map from one-forms to two forms by the two laws

$$
d^{2}=0
$$

and

$$
d(f \theta)=d f \wedge \theta+f d \theta
$$

Exercise $2 d\left(F_{1} d u+F_{2} d v\right)=\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d u \wedge d v$.
Exercise 3 Assuming the validity of the previous exercise, and the properties of the wedge product, use definition 0.2 to show that ddf $=0$ for any smooth function f.

Integrating two-forms We can integrate two-forms over parameterized regions in the surface. If $\Phi: \Omega \subset \mathbb{R}^{2} \rightarrow \Sigma$ is such a parameterization, ie smooth map expressed in coordinates as $\Phi(x, y)=(u(x, y), v(x, y))$ and if $\omega=$ $F(u, v) d u \wedge d v$ is a two-form, we define

$$
\int_{\Phi(\Omega)} \omega=\int_{\Omega} \Phi^{*} \omega
$$

where

$$
\Phi^{*} \omega=F(u(x, y), v(x, y)) \Phi^{*} d u \wedge d v
$$

and where $\Phi^{*} d u \wedge d v$ means to express u, v as functions of x, y according to Φ , to take their differentials and to wedge the result.

Exercise $4 . \Phi^{*} d u \wedge d v=\frac{\partial(u, v)}{\partial(x, y)} d x \wedge d y$ where $\frac{\partial(u, v)}{\partial(x, y)}$ is the Jacobian of the map $(x, y) \mapsto \Phi(x, y)=(u(x, y), v(x, y))$, which is to say, the determinant of the two-by-two derivative matrix of this transformation.

Theorem 1. Let Ω be an (oriented) region on Σ whose boundary $\partial \Omega$ is the closed curve c. Then

$$
\int_{\Omega} d \alpha=\int_{c} \alpha
$$

Exercise 5. Take $\Sigma=\mathbb{R}^{2}$ with coordinates x, y. Write $\alpha=P d x+Q d y$. Verify that the above theorem coincides with Green's theorem in the plane.

```
*********
```

Coordinate invariance; how forms change under change of coordinates. Redux. Recall exercise 1: Let x, y be another pair of coordinates for our surface. Thus the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ is invertible whereever both coordinates are defined. To express the one-form $\alpha=F_{1} d u+F_{2} d v$ in terms of the new basis $d x, d y$, we write $\alpha=\tilde{F}_{1} d x+\tilde{F}_{2} d y$, and view of x, y as functions of u, v to compute the change of basis formula relating $d x, d y$ to $d u, d v$.

The Jacobian factor in exercise 4 is also precisely the correction factor needed to make the change of variables formula for multi-variable calculus work for twodimensional integrals.

To summarize
Proposition 1 The integral of a 2-form over a surface, or of a 1-form over a curve can be done in coordinates but the result is independent of the coordinates used to express the forms.

