
Let (u, v) be local coordinates on some smooth surface Σ.

Definition 0.1 (Preliminary) A one-form on a surface is a a linear expres-
sion in the indeterminates du and dv with coefficents smooth functions. Thus a
one-form is an expression of the form

α := F1(u, v)du+ F2(u, v)dv

.
A two-form on the surface is a linear expression in the indeterminate du∧dv

with coefficent a smooth function. Thus a two-form has the shape

ω = G(u, v)du ∧ dv.

Integrating one- forms. One-forms are the integrands for line integrals. In
local coordinates a curve on the surface is given by c(t) = (u(t), v(t)), a ≤ t ≤ b.
Then, with α as above,∫

c

α =

∫ b

a

F1(u(t), v(t))
du

dt
dt+ F2(u(t), v(t))

dv

dt
dt

and this integral is termed the integral of the one-form α over the curve c.
The differential.

Definition 0.2 Let f = f(u, v) be a function on the surface Σ. The differential
of f is the one-form

df =
∂f

∂u
du+

∂f

∂v
dv.

The fundamental theorem of calculus reads, in the language of forms:∫
c

df = f(c(b))− f(c(a)).

Exercise 1 . Verify that the integral of a one-form is independent of coordi-
nates. Thus, if (x, y) are other coordinates on the surface and if the curve c is
defined in the overlap of the (u, v) and (x, y) coordinate chart, show that

∫
c
α

is the same, regardless of what chart you use for the computation. Use the ob-
vious transformation rule dx = ∂x

∂udu+ ∂x
∂v dv and similarly for dy to transform

between forms written in different charts.

The wedge product. The basic rule regarding the wedge product is that
df ∧ dg = −dg ∧ df where f and g are functions. Thus du ∧ du = dv ∧ dv = 0.
We posit that du ∧ dv 6= 0 so that, as the definition above asserts, ,pointwise,
the space of two-forms have du ∧ dv as a basis.

We extend d to a map from one-forms to two forms by the two laws

d2 = 0

and
d(fθ) = df ∧ θ + fdθ.
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Exercise 2 d(F1du+ F2dv) = (∂F2

∂x −
∂F1

∂y )du ∧ dv.

Exercise 3 Assuming the validity of the previous exercise, and the properties
of the wedge product, use definition 0.2 to show that ddf = 0 for any smooth
function f .

Integrating two-forms We can integrate two-forms over parameterized
regions in the surface. If Φ : Ω ⊂ R2 → Σ is such a parameterization, ie
smooth map expressed in coordinates as Φ(x, y) = (u(x, y), v(x, y)) and if ω =
F (u, v)du ∧ dv is a two-form, we define∫

Φ(Ω)

ω =

∫
Ω

Φ∗ω

where
Φ∗ω = F (u(x, y), v(x, y))Φ∗du ∧ dv

and where Φ∗du ∧ dv means to express u, v as functions of x, y according to Φ
, to take their differentials and to wedge the result.

Exercise 4 . Φ∗du ∧ dv = ∂(u,v)
∂(x,y)dx ∧ dy where ∂(u,v)

∂(x,y) is the Jacobian of the

map (x, y) 7→ Φ(x, y) = (u(x, y), v(x, y)), which is to say, the determinant of
the two-by-two derivative matrix of this transformation.

Theorem 1 . Let Ω be an (oriented) region on Σ whose boundary ∂Ω is the
closed curve c. Then ∫

Ω

dα =

∫
c

α

Exercise 5 . Take Σ = R2 with coordinates x, y. Write α = Pdx+Qdy. Verify
that the above theorem coincides with Green’s theorem in the plane.

*********
Coordinate invariance; how forms change under change of coordinates. Re-

dux. Recall exercise 1: Let x, y be another pair of coordinates for our surface.

Thus the Jacobian ∂(x,y)
∂(u,v) is invertible whereever both coordinates are defined.

To express the one-form α = F1du+ F2dv in terms of the new basis dx, dy, we
write α = F̃1dx + F̃2dy, and view of x, y as functions of u, v to compute the
change of basis formula relating dx, dy to du, dv.

The Jacobian factor in exercise 4 is also precisely the correction factor needed
to make the change of variables formula for multi-variable calculus work for two-
dimensional integrals.

To summarize

Proposition 1 The integral of a 2-form over a surface, or of a 1-form over a
curve can be done in coordinates but the result is independent of the coordinates
used to express the forms.
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