Let (u, v) be local coordinates on some smooth surface Σ .

Definition 0.1 (Preliminary) A one-form on a surface is a a linear expression in the indeterminates du and dv with coefficients smooth functions. Thus a one-form is an expression of the form

$$\alpha := F_1(u, v)du + F_2(u, v)dv$$

A two-form on the surface is a linear expression in the indeterminate $du \wedge dv$ with coefficient a smooth function. Thus a two-form has the shape

$$\omega = G(u, v)du \wedge dv$$

Integrating one- forms. One-forms are the integrands for line integrals. In local coordinates a curve on the surface is given by $c(t) = (u(t), v(t)), a \le t \le b$. Then, with α as above,

$$\int_c \alpha = \int_a^b F_1(u(t), v(t)) \frac{du}{dt} dt + F_2(u(t), v(t)) \frac{dv}{dt} dt$$

and this integral is termed the integral of the one-form α over the curve c. The differential.

Definition 0.2 Let f = f(u, v) be a function on the surface Σ . The differential of f is the one-form

$$df = \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv.$$

The fundamental theorem of calculus reads, in the language of forms:

$$\int_{c} df = f(c(b)) - f(c(a)).$$

Exercise 1. Verify that the integral of a one-form is independent of coordinates. Thus, if (x, y) are other coordinates on the surface and if the curve c is defined in the overlap of the (u, v) and (x, y) coordinate chart, show that $\int_c \alpha$ is the same, regardless of what chart you use for the computation. Use the obvious transformation rule $dx = \frac{\partial x}{\partial u} du + \frac{\partial x}{\partial v} dv$ and similarly for dy to transform between forms written in different charts.

The wedge product. The basic rule regarding the wedge product is that $df \wedge dg = -dg \wedge df$ where f and g are functions. Thus $du \wedge du = dv \wedge dv = 0$. We posit that $du \wedge dv \neq 0$ so that, as the definition above asserts, pointwise, the space of two-forms have $du \wedge dv$ as a basis.

We extend d to a map from one-forms to two forms by the two laws

$$d^2 = 0$$

and

$$d(f\theta) = df \wedge \theta + fd\theta.$$

Exercise 2 $d(F_1du + F_2dv) = (\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y})du \wedge dv.$

Exercise 3 Assuming the validity of the previous exercise, and the properties of the wedge product, use definition 0.2 to show that ddf = 0 for any smooth function f.

Integrating two-forms We can integrate two-forms over parameterized regions in the surface. If $\Phi : \Omega \subset \mathbb{R}^2 \to \Sigma$ is such a parameterization, ie smooth map expressed in coordinates as $\Phi(x, y) = (u(x, y), v(x, y))$ and if $\omega = F(u, v)du \wedge dv$ is a two-form, we define

$$\int_{\Phi(\Omega)} \omega = \int_{\Omega} \Phi^* \omega$$

where

$$\Phi^*\omega=F(u(x,y),v(x,y))\Phi^*du\wedge dv$$

and where $\Phi^* du \wedge dv$ means to express u, v as functions of x, y according to Φ , to take their differentials and to wedge the result.

Exercise 4. $\Phi^* du \wedge dv = \frac{\partial(u,v)}{\partial(x,y)} dx \wedge dy$ where $\frac{\partial(u,v)}{\partial(x,y)}$ is the Jacobian of the map $(x,y) \mapsto \Phi(x,y) = (u(x,y), v(x,y))$, which is to say, the determinant of the two-by-two derivative matrix of this transformation.

Theorem 1 . Let Ω be an (oriented) region on Σ whose boundary $\partial\Omega$ is the closed curve c. Then

$$\int_{\Omega} d\alpha = \int_{c} \alpha$$

Exercise 5 . Take $\Sigma = \mathbb{R}^2$ with coordinates x, y. Write $\alpha = Pdx + Qdy$. Verify that the above theorem coincides with Green's theorem in the plane.

Coordinate invariance; how forms change under change of coordinates. Redux. Recall exercise 1: Let x, y be another pair of coordinates for our surface. Thus the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$ is invertible whereever both coordinates are defined. To express the one-form $\alpha = F_1 du + F_2 dv$ in terms of the new basis dx, dy, we write $\alpha = \tilde{F}_1 dx + \tilde{F}_2 dy$, and view of x, y as functions of u, v to compute the change of basis formula relating dx, dy to du, dv.

The Jacobian factor in exercise 4 is also precisely the correction factor needed to make the change of variables formula for multi-variable calculus work for twodimensional integrals.

To summarize

Proposition 1 The integral of a 2-form over a surface, or of a 1-form over a curve can be done in coordinates but the result is independent of the coordinates used to express the forms.

^{*******}