Math 209 Riemannian Geometry

Jeongmin Shon

Problem. Let $M^{2} \subset \mathbb{R}^{3}$ be embedded surface. Then the induced metric on M^{2} is obtained by taking the standard inner product on \mathbb{R}^{3} and restricting it to the tangent planes $T_{m} M \subset \mathbb{R}^{3}$ to the surface. In this way we obtain a smoothly varying inner product on the tangent bundle of M : a Riemannian metric.

Exercise 0.1. Standard spherical coordinates on $M^{2}=S^{2}$, the unit two-sphere, are $\vec{x}(\theta, \phi)=(\cos (\theta) \sin (\phi), \sin (\theta) \sin (\phi), \cos (\phi))$. Compute that $d \vec{x} \cdot d \vec{x}=d \phi^{2}+\sin ^{2}(\phi) d \theta^{2}$.
$d \vec{x}=(-\sin (\theta) \sin (\phi) d \theta+\cos (\theta) \cos (\phi) d \phi, \cos (\theta) \sin (\phi) d \theta+\sin (\theta) \cos (\phi) d \phi,-\sin (\phi) d \phi)$. Thus,

$$
\begin{aligned}
d \vec{x} \cdot d \vec{x} & =\sin ^{2}(\theta) \sin ^{2}(\phi) d \theta^{2}+\cos ^{2}(\theta) \cos ^{2}(\phi) d \phi^{2}-2 \sin (\theta) \sin (\phi) \cos (\theta) \cos (\phi) d \theta d \phi \\
& +\cos ^{2}(\theta) \sin ^{2}(\phi) d \theta^{2}+\sin ^{2}(\theta) \cos ^{2}(\phi) d \phi^{2}+2 \sin (\theta) \sin (\phi) \cos (\theta) \cos (\phi) d \theta d \phi \\
& +\sin ^{2}(\phi) d \phi \\
& =d \phi^{2}+\sin ^{2}(\phi) d \theta^{2}
\end{aligned}
$$

Exercise 1.1. Verify that if we apply GS to the coordinate basis $\frac{\partial}{\partial u}, \frac{\partial}{\partial v}$ associated to Gauss' form

$$
d s^{2}=E(u, v) d u^{2}+2 F(u, v) d u d v+G(u, v) d v^{2}
$$

then we get a smooth frame e_{1}, e_{2}. (Express e_{1}, e_{2} in terms of E, F, G and $\frac{\partial}{\partial u}, \frac{\partial}{\partial v}$. Argue the resulting vector fields are smooth.)

Note that $d s^{2}$ is a positive-definite quadratic form on the tangent bundle. Hence, $E G-F^{2}>0$ everywhere. Let

$$
\begin{aligned}
& v_{1}=\partial_{u} \\
& v_{2}=\partial_{v}-\frac{\partial_{v} \cdot \partial_{u}}{\partial_{u} \cdot \partial_{u}} \partial_{u}=\partial_{v}-\frac{F}{E} \partial_{u}
\end{aligned}
$$

Then v_{1} and v_{2} are orthogonal. We can see that

$$
\begin{aligned}
& \left\langle v_{1}, v_{1}\right\rangle=E \\
& \left.<v_{2}, v_{2}\right\rangle=\frac{F^{2}}{E}-2 \frac{F^{2}}{E}+G=\frac{-F^{2}+E G}{E} .
\end{aligned}
$$

Let

$$
\begin{aligned}
e_{1} & =\frac{1}{\sqrt{E}} \partial_{u} \\
e_{2} & =\sqrt{\frac{E}{E G-F^{2}}}\left(\partial_{v}-\frac{F}{E} \partial_{u}\right) .
\end{aligned}
$$

Then e_{1} and e_{2} are orthonormal. Since $d s^{2}\left(\partial_{u}, \partial_{u}\right)=E \neq 0, e_{1}$ is a smooth vector field. Since $E G-F^{2}>0$ everywhere, $\sqrt{\frac{E}{E G-F^{2}}}$ is a smooth function. Hence, e_{2} is also a smooth vector field.

Exercise 1.2. Let E_{1}, E_{2} be a frame field and θ^{1}, θ^{2} the dual coframe field. Show that E_{1}, E_{2} is orthonormal if and only if $d s^{2}=\left(\theta^{1}\right)^{2}+\left(\theta^{2}\right)^{2}$.
(\Rightarrow) Note that $d s^{2}=e\left(\theta^{1}\right)^{2}+2 f \theta^{1} \theta^{2}+g\left(\theta^{2}\right)^{2}$. On the tangent space $T_{p} M$ for each $p \in M$, the metric tensor $d s^{2}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is a quadratic symmetric bilinear form. For $v, w \in T_{p} M$, let $v=\left(v_{1}, v_{2}\right)$ and $w=\left(w_{1}, w_{2}\right)$ with respect to the basis $E_{1}(p), E_{2}(p)$. Then there is a symmetric matrix $\left[\begin{array}{ll}e & f \\ f & g\end{array}\right] \in G L(2, \mathbb{R})$ such that

$$
d s_{p}^{2}(v, w)=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{ll}
e & f \\
f & g
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
d s_{p}^{2}(v, w) & =e v_{1} w_{1}+f\left(v_{1} w_{2}+v_{2} w_{1}\right)+g v_{2} w_{2} \\
& =\left[e\left(\theta_{p}^{1}\right)^{2}+2 f \theta_{p}^{1} \theta_{p}^{2}+g\left(\theta_{p}^{2}\right)^{2}\right](v, w)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& 1=d s_{p}^{2}\left(E_{1}(p), E_{1}(p)\right)=e \theta_{p}^{1}\left(E_{1}(p)\right) \theta_{p}^{1}\left(E_{1}(p)\right)=e \\
& 0=d s_{p}^{2}\left(E_{1}(p), E_{2}(p)\right)=2 f \frac{1}{2}\left[\theta^{1}\left(E_{1}(p)\right) \theta^{2}\left(E_{2}(p)\right)+\theta^{1}\left(E_{2}(p)\right) \theta^{2}\left(E_{1}(p)\right)\right]=f \\
& 1=d s_{p}^{2}\left(E_{2}(p), E_{2}(p)\right)=g \theta_{p}^{2}\left(E_{1}(p)\right) \theta_{p}^{2}\left(E_{1}(p)\right)=g
\end{aligned}
$$

Thus, $d s_{p}^{2}=\left(\theta_{p}^{1}\right)^{2}+\left(\theta_{p}^{2}\right)^{2}$ on $T_{p} M . q$
(\Leftarrow) At each point $p \in M$

$$
\begin{aligned}
d s_{p}^{2}\left(E_{i}(p), E_{j}(p)\right) & =\theta_{p}^{1}\left(E_{i}(p)\right) \theta_{p}^{1}\left(E_{j}(p)\right)+\theta_{p}^{2}\left(E_{i}(p)\right) \theta_{p}^{2}\left(E_{j}(p)\right) \\
& =\delta_{i j} .
\end{aligned}
$$

Thus, E_{1}, E_{2} is orthonormal.

Exercise 1.3. Let $M \subset \mathbb{R}^{3}$ be an oriented surface with unit normal vector N. Show that the two-form $\Omega=i_{N}(d x \wedge d y \wedge d z)$ restricted to M is the area form $d A$ on M. Hint: show that if $\vec{v}, \vec{w} \in T_{m} M$ then $\Omega(\vec{v}, \vec{w})=N \cdot(\vec{v} \times \vec{w})$.

Let $N=\left(N_{x}, N_{y}, N_{z}\right)$.

$$
\begin{aligned}
\Omega=i_{N}(d x \wedge d y \wedge d z) & =i_{N}(d x)(d y \wedge d z)-d x \wedge i_{N}(d y \wedge d z) \\
& =d x(N)(d y \wedge d z)-d x \wedge(d y(N) d z-d z(N) d y) \\
& =N_{x}(d y \wedge d z)-N_{y}(d x \wedge d z)+N_{z}(d x \wedge d y)
\end{aligned}
$$

Let $\vec{v}=\left(v_{x}, v_{y}, v_{z}\right)$ and $\vec{w}=\left(w_{x}, w_{y}, w_{z}\right)$ in $T_{m} M$. Then

$$
\begin{aligned}
\Omega(\vec{v}, \vec{w}) & =N_{x}(d y \wedge d z)(\vec{v}, \vec{w})-N_{y}(d x \wedge d z)(\vec{v}, \vec{w})+N_{z}(d x \wedge d y)(\vec{v}, \vec{w}) \\
& =N_{x}\left(v_{y} w_{z}-w_{y} v_{z}\right)-N_{y}\left(v_{x} w_{z}-w_{x} v_{z}\right)+N_{z}\left(v_{x} w_{y}-v_{y} w_{x}\right) \\
& =\left(N_{x}, N_{y}, N_{z}\right) \cdot\left(v_{y} w_{z}-w_{y} v_{z},-\left(v_{x} w_{z}-w_{x} v_{z}\right), v_{x} w_{y}-v_{y} w_{x}\right) \\
& =N \cdot(\vec{v} \times \vec{w}) .
\end{aligned}
$$

For any distinct vectors $\vec{v}, \vec{w} \in T_{m} M$, the vector $\vec{v} \times \vec{w}=c N$ for a nonzero constant $c \in \mathbb{R}$. Thus, Ω is a nowhere-vanishing 2 -form. Hence, Ω is a volume form on M.

Exercise 1.4. Suppose that θ^{1}, θ^{2} is an oriented orthonormal coframe for $M^{2}, d s^{2}$ defined on a neighborhood $V \subset M$. Show that the pair of one-forms $\overline{\theta^{1}}, \overline{\theta^{2}}$, also defined on V, is also an oriented orthonormal coframe if and only if there is a circle-valued function $\psi: V \rightarrow S^{1}$ such that on V we have that:

$$
\begin{aligned}
& \overline{\theta^{1}}=\cos (\psi) \theta^{1}+\sin (\psi) \theta^{2} \\
& \overline{\theta^{2}}=-\sin (\psi) \theta^{1}+\cos (\psi) \theta^{2}
\end{aligned}
$$

(\Rightarrow) Let

$$
\begin{aligned}
& \overline{\theta^{1}}=f_{1} \theta^{1}+f_{2} \theta^{2} \\
& \overline{\theta^{2}}=g_{1} \theta^{1}+g_{2} \theta^{2}
\end{aligned}
$$

Since $d s^{2}=\left(\overline{\theta^{1}}\right)^{2}+\left(\overline{\theta^{2}}\right)^{2}$ and $d s^{2}=\left(\theta^{1}\right)^{2}+\left(\theta^{2}\right)^{2}$,

$$
\left(f_{1}\right)^{2}+\left(g_{1}\right)^{2}=1 \quad,\left(f_{2}\right)^{2}+\left(g_{2}\right)^{2}=1 \quad \text { and } f_{1} f_{2}+g_{1} g_{2}=0 .
$$

Also, $f_{1} g_{2}-g_{1} f_{2}=1$ because $\theta_{1} \wedge \theta_{2}=\overline{\theta_{1}} \wedge \overline{\theta_{2}}$. Thus, for each $p \in M$ and on a neighborhood V of p, the matrix

$$
\left[\begin{array}{ll}
f_{1}(p) & g_{1}(p) \\
f_{2}(p) & g_{2}(p)
\end{array}\right] \in S O(2, \mathbb{R})
$$

Then there is a circle-valued function $\psi: V \rightarrow S^{1}$ such that

$$
\left[\begin{array}{cc}
f_{1}(p) & g_{1}(p) \\
f_{2}(p) & g_{2}(p)
\end{array}\right]=\left[\begin{array}{cc}
\cos (\psi(p)) & -\sin (\psi(p)) \\
\sin (\psi(p)) & \cos (\psi(p))
\end{array}\right] .
$$

Thus, on V

$$
\begin{aligned}
& \overline{\theta^{1}}=\cos (\psi) \theta^{1}+\sin (\psi) \theta^{2} \\
& \overline{\theta^{2}}=-\sin (\psi) \theta^{1}+\cos (\psi) \theta^{2} .
\end{aligned}
$$

(\Leftarrow) We can easily see that $\left(\overline{\theta^{1}}\right)^{2}+\left(\overline{\theta^{2}}\right)^{2}=\left(\theta^{1}\right)^{2}+\left(\theta^{2}\right)^{2}=d s^{2}$ and $\overline{\theta^{1}} \wedge \overline{\theta^{2}}=\theta^{1} \wedge \theta^{2}$.

Exercise 2.1. Given the oriented orthonormal coframe θ^{1}, θ^{2}, show that the Cartan's structure formula uniquely determines ω.

Let $\omega=\alpha \theta^{1}+\beta \theta^{2}$ for scalar function α, β. Then

$$
\begin{aligned}
& d \theta^{1}=\omega \wedge \theta^{2}=\left(\alpha \theta^{1}+\beta \theta^{2}\right) \wedge \theta^{2}=\alpha \theta^{1} \wedge \theta^{2} \\
& d \theta^{2}=-\omega \wedge \theta^{2}=-\left(\alpha \theta^{1}+\beta \theta^{2}\right) \wedge \theta^{1}=\beta \theta^{1} \wedge \theta^{2} .
\end{aligned}
$$

Let $\omega^{\prime}=\alpha^{\prime} \theta^{1}+\beta^{\prime} \theta^{2}$ be another one-form satisfying the Cartan's structure equation. Then $\alpha^{\prime}=\alpha$ and $\beta^{\prime}=\beta$.

Exercise 2.2. Show that if $\overline{\theta^{1}}, \overline{\theta^{2}}$ is another oriented orthonormal coframe then its connection one-form $\bar{\omega}$ is given by $\bar{\omega}=\omega+d \psi$ with ψ as in exercise 1.4.

By Exercise 1.4, there is a circle-valued function ψ such that

$$
\begin{aligned}
& \overline{\theta^{1}}=\cos (\psi) \theta^{1}+\sin (\psi) \theta^{2} \\
& \overline{\theta^{2}}=-\sin (\psi) \theta^{1}+\cos (\psi) \theta^{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
d \overline{\theta^{1}} & =-\sin (\psi) d \psi \wedge \theta^{1}+\cos (\psi) d \theta^{1}+\cos (\psi) d \psi \wedge \theta^{2}+\sin (\psi) d \theta^{2} \\
& =-\sin (\psi)(d \psi+\omega) \wedge \theta^{1}+\cos (\psi)(d \psi+\omega) \wedge \theta^{2} \\
& =(d \psi+\omega) \wedge\left(-\sin (\psi) \theta^{1}+\cos (\psi) \theta^{2}\right) \\
& =(d \psi+\omega) \wedge \overline{\theta^{2}} \\
\overline{\theta^{2}} & =-\cos (\psi) d \psi \wedge \theta^{1}-\sin (\psi) d \theta^{1}-\sin (\psi) d \psi \wedge \theta^{2}+\cos (\psi) d \theta^{2} \\
& =-\cos (\psi)(d \psi+\omega) \wedge \theta^{1}-\sin (\psi)(d \psi+\omega) \wedge \theta^{2} \\
& =-(d \psi+\omega) \wedge\left(\cos (\psi) \theta^{1}+\sin (\psi) \theta^{2}\right) \\
& =(d \psi+\omega) \wedge \overline{\theta^{1}} .
\end{aligned}
$$

Thus, the connection one-form $\bar{\omega}$ is given by $\bar{\omega}=\omega+d \psi$.
Exercise 2.3. Show that K does not depend on the orientation. If we reverse the orientation of M then K remains unchanged. In particular M does not need to be oriented for the Gaussian curvature to be defined.

Assume that M is oriented. Then M has an oriented orthonormal coframe $\left(\theta^{1}, \theta^{2}\right)$ on a connected neighborhood U of p, for $p \in M$. The 2 -form $\theta^{1} \wedge \theta^{2}$ determines the orientation of M. Also, $-\theta^{1} \wedge \theta^{2}$ determines the reversing orientation of M. Let $\overline{\theta^{1}}=-\theta^{1}$ and $\overline{\theta^{2}}=\theta^{2}$. Then

$$
d s^{2}=\left(\overline{\theta^{1}}\right)^{2}+\left(\overline{\theta^{2}}\right)^{2} .
$$

Also,

$$
\begin{aligned}
& d \overline{\theta^{1}}=-\omega \wedge \overline{\theta^{2}} \\
& d \overline{\theta^{2}}=-\omega \wedge \theta^{2}=\omega \wedge \overline{\theta^{1}} .
\end{aligned}
$$

Let $\bar{\omega}=-\omega$. Then $d \bar{\omega}=-K \overline{\theta^{1}} \wedge \overline{\theta^{2}}$. Thus, K remains unchanged.

Exercise 2.4. Compute the Cartan structure equations and find the Gaussian curvature K in the following two cases :

$$
\begin{align*}
& d s^{2}=d r^{2}+f(r)^{2} d \theta^{2} \tag{1}\\
& d s^{2}=\lambda(u, v)^{2}\left(d u^{2}+d v^{2}\right) . \tag{2}
\end{align*}
$$

(1) Assume that $f(r)$ is a nowhere vanishing function. Let $\theta_{1}=d r$ and $\theta_{2}=f(r) d \theta$.

$$
\begin{aligned}
d \theta_{1} & =0 \\
d \theta_{2} & =-\left(\frac{\partial f}{\partial r} d \theta\right) \wedge d r .
\end{aligned}
$$

Let $\omega=\frac{\partial f}{\partial r} d \theta$. Then $d \omega=\frac{\partial^{2} f}{\partial r^{2}} d r \wedge d \theta=\frac{\partial^{2} f}{\partial r^{2}} \cdot \frac{1}{f(r)} \theta_{1} \wedge \theta_{2}$. Thus, the curvature is $-\frac{\partial^{2} f}{\partial r^{2}} \cdot \frac{1}{f(r)}$.
(2) Assume that $\lambda(u, v)$ is a nowhere vanishing function. Let $\theta_{1}=\lambda(u, v) d u$ and $\theta_{2}=\lambda(u, v) d v$.

$$
\begin{aligned}
& d \theta_{1}=-\frac{\partial \lambda}{\partial v} d u \wedge d v=\left(-\frac{\partial \lambda}{\partial v} \cdot \frac{1}{\lambda} d u\right) \wedge \lambda d v=\left(-\frac{\partial \lambda}{\partial v} \cdot \frac{1}{\lambda} d u+\frac{\partial \lambda}{\partial u} \cdot \frac{1}{\lambda} d v\right) \wedge \theta_{2} \\
& d \theta_{2}=\frac{\partial \lambda}{\partial u} d u \wedge d v=\left(-\frac{\partial \lambda}{\partial u} \cdot \frac{1}{\lambda} d v\right) \wedge \lambda d u=-\left(-\frac{\partial \lambda}{\partial v} \cdot \frac{1}{\lambda} d u+\frac{\partial \lambda}{\partial u} \cdot \frac{1}{\lambda} d v\right) \wedge \theta_{1} .
\end{aligned}
$$

Let $\omega=-\frac{\partial \lambda}{\partial v} \cdot \frac{1}{\lambda} d u+\frac{\partial \lambda}{\partial u} \cdot \frac{1}{\lambda} d v=(\log \lambda)_{u} d v-(\log \lambda)_{v} d u$. Then

$$
d \omega=\left[(\log \lambda)_{u u}+(\log \lambda)_{v v}\right] d u \wedge d v=\triangle(\log \lambda) \cdot \frac{1}{\lambda^{2}} \theta_{1} \wedge \theta_{2}
$$

Thus,

$$
K=-\triangle(\log \lambda) \cdot \frac{1}{\lambda^{2}} .
$$

Exercise 2.6. Find f as in (1) of exer 2.4 such that $K=-1$ and f has first order Taylor expansion $f(r)=r+\mathcal{O}\left(r^{2}\right)$.

From (1) in exercise 2.4, $\frac{\partial^{2} f}{\partial r^{2}} \cdot \frac{1}{f(r)}=1$. Then $\frac{\partial^{2} f}{\partial r^{2}}=f(r)$. Hence,

$$
f(r)=c_{1} e^{r}+c_{2} e^{-r}
$$

for any constants c_{1}, c_{2}. By the assumption, $f(0)=0$ and $f^{\prime}(0)=1$.

$$
\begin{aligned}
& 0=f(0)=c_{1}+c_{2} \\
& 1=f^{\prime}(0)=c_{1}-c_{2} .
\end{aligned}
$$

Hence, $c_{1}=\frac{1}{2}$ and $c_{2}=-\frac{1}{2}$. Thus, $f(r)=\sinh (r)$.

