
Math 209 Riemannian Geometry

Jeongmin Shon

Problem. Let M2 ⊂ R3 be embedded surface. Then the induced metric on M2 is ob-

tained by taking the standard inner product on R3 and restricting it to the tangent planes

TmM ⊂ R3 to the surface. In this way we obtain a smoothly varying inner product on

the tangent bundle of M : a Riemannian metric.

Exercise 0.1. Standard spherical coordinates on M2 = S2, the unit two-sphere, are
−→x (θ, φ) = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)). Compute that d−→x ·d−→x = dφ2+sin2(φ) dθ2.

d−→x = (− sin(θ) sin(φ)dθ+cos(θ) cos(φ)dφ, cos(θ) sin(φ)dθ+sin(θ) cos(φ)dφ, − sin(φ)dφ).

Thus,

d−→x · d−→x = sin2(θ) sin2(φ)dθ2 + cos2(θ) cos2(φ)dφ2 − 2 sin(θ) sin(φ) cos(θ) cos(φ)dθdφ

+ cos2(θ) sin2(φ)dθ2 + sin2(θ) cos2(φ)dφ2 + 2 sin(θ) sin(φ) cos(θ) cos(φ)dθdφ

+ sin2(φ)dφ.

= dφ2 + sin2(φ) dθ2.

Exercise 1.1. Verify that if we apply GS to the coordinate basis ∂
∂u ,

∂
∂v associated to

Gauss’ form

ds2 = E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2

then we get a smooth frame e1, e2. (Express e1, e2 in terms of E,F,G and ∂
∂u ,

∂
∂v . Argue

the resulting vector fields are smooth.)

Note that ds2 is a positive-definite quadratic form on the tangent bundle. Hence,

EG− F 2 > 0 everywhere. Let

v1 = ∂u

v2 = ∂v −
∂v · ∂u
∂u · ∂u

∂u = ∂v −
F

E
∂u.
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Then v1 and v2 are orthogonal. We can see that

< v1, v1 >= E

< v2, v2 >=
F 2

E
− 2

F 2

E
+G =

−F 2 + EG

E
.

Let

e1 =
1√
E
∂u

e2 =

√
E

EG− F 2

(
∂v −

F

E
∂u

)
.

Then e1 and e2 are orthonormal. Since ds2(∂u, ∂u) = E 6= 0, e1 is a smooth vector field.

Since EG−F 2 > 0 everywhere,
√

E
EG−F 2 is a smooth function. Hence, e2 is also a smooth

vector field.

Exercise 1.2. Let E1, E2 be a frame field and θ1, θ2 the dual coframe field. Show that

E1, E2 is orthonormal if and only if ds2 = (θ1)2 + (θ2)2.

(⇒) Note that ds2 = e(θ1)2 + 2fθ1θ2 + g(θ2)2. On the tangent space TpM for each

p ∈ M, the metric tensor ds2 : TpM × TpM → R is a quadratic symmetric bilinear form.

For v, w ∈ TpM, let v = (v1, v2) and w = (w1, w2) with respect to the basis E1(p), E2(p).

Then there is a symmetric matrix

[
e f

f g

]
∈ GL(2,R) such that

ds2p(v, w) = [v1 v2]

[
e f

f g

][
w1

w2

]
.

Then

ds2p(v, w) = ev1w1 + f(v1w2 + v2w1) + gv2w2

= [e(θ1p)
2 + 2fθ1pθ

2
p + g(θ2p)

2](v, w).

Thus,

1 = ds2p(E1(p), E1(p)) = eθ1p(E1(p))θ
1
p(E1(p)) = e

0 = ds2p(E1(p), E2(p)) = 2f
1

2
[θ1(E1(p))θ

2(E2(p)) + θ1(E2(p))θ
2(E1(p))] = f

1 = ds2p(E2(p), E2(p)) = gθ2p(E1(p))θ
2
p(E1(p)) = g.
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Thus, ds2p = (θ1p)
2 + (θ2p)

2 on TpM.q

(⇐) At each point p ∈M

ds2p(Ei(p), Ej(p)) = θ1p(Ei(p))θ
1
p(Ej(p)) + θ2p(Ei(p))θ

2
p(Ej(p))

= δij .

Thus, E1, E2 is orthonormal.

Exercise 1.3. Let M ⊂ R3 be an oriented surface with unit normal vector N. Show that

the two-form Ω = iN (dx∧ dy ∧ dz) restricted to M is the area form dA on M. Hint: show

that if −→v ,−→w ∈ TmM then Ω(−→v ,−→w ) = N · (−→v ×−→w ).

Let N = (Nx, Ny, Nz).

Ω = iN (dx ∧ dy ∧ dz) = iN (dx)(dy ∧ dz)− dx ∧ iN (dy ∧ dz)

= dx(N)(dy ∧ dz)− dx ∧ (dy(N)dz − dz(N)dy)

= Nx(dy ∧ dz)−Ny(dx ∧ dz) +Nz(dx ∧ dy).

Let −→v = (vx, vy, vz) and −→w = (wx, wy, wz) in TmM. Then

Ω(−→v ,−→w ) = Nx(dy ∧ dz)(−→v ,−→w )−Ny(dx ∧ dz)(−→v ,−→w ) +Nz(dx ∧ dy)(−→v ,−→w )

= Nx(vywz − wyvz)−Ny(vxwz − wxvz) +Nz(vxwy − vywx)

= (Nx, Ny, Nz) · (vywz − wyvz,−(vxwz − wxvz), vxwy − vywx)

= N · (−→v ×−→w ).

For any distinct vectors −→v ,−→w ∈ TmM, the vector −→v ×−→w = cN for a nonzero constant

c ∈ R. Thus, Ω is a nowhere-vanishing 2-form. Hence, Ω is a volume form on M.

Exercise 1.4. Suppose that θ1, θ2 is an oriented orthonormal coframe for M2, ds2 defined

on a neighborhood V ⊂M. Show that the pair of one-forms θ1, θ2, also defined on V, is also

an oriented orthonormal coframe if and only if there is a circle-valued function ψ : V → S1

such that on V we have that:

θ1 = cos(ψ)θ1 + sin(ψ)θ2

θ2 = − sin(ψ)θ1 + cos(ψ)θ2
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(⇒) Let

θ1 = f1θ
1 + f2θ

2

θ2 = g1θ
1 + g2θ

2

Since ds2 = (θ1)2 + (θ2)2 and ds2 = (θ1)2 + (θ2)2,

(f1)
2 + (g1)

2 = 1 , (f2)
2 + (g2)

2 = 1 and f1f2 + g1g2 = 0.

Also, f1g2−g1f2 = 1 because θ1∧θ2 = θ1∧θ2. Thus, for each p ∈M and on a neighborhood

V of p, the matrix [
f1(p) g1(p)

f2(p) g2(p)

]
∈ SO(2,R).

Then there is a circle-valued function ψ : V → S1 such that[
f1(p) g1(p)

f2(p) g2(p)

]
=

[
cos(ψ(p)) − sin(ψ(p))

sin(ψ(p)) cos(ψ(p))

]
.

Thus, on V

θ1 = cos(ψ)θ1 + sin(ψ)θ2

θ2 = − sin(ψ)θ1 + cos(ψ)θ2.

(⇐) We can easily see that (θ1)2 + (θ2)2 = (θ1)2 + (θ2)2 = ds2 and θ1 ∧ θ2 = θ1 ∧ θ2.

Exercise 2.1. Given the oriented orthonormal coframe θ1, θ2, show that the Cartan’s

structure formula uniquely determines ω.

Let ω = αθ1 + βθ2 for scalar function α, β. Then

dθ1 = ω ∧ θ2 = (αθ1 + βθ2) ∧ θ2 = α θ1 ∧ θ2

dθ2 = −ω ∧ θ2 = −(αθ1 + βθ2) ∧ θ1 = β θ1 ∧ θ2.

Let ω′ = α′θ1+β′θ2 be another one-form satisfying the Cartan’s structure equation. Then

α′ = α and β′ = β.

Exercise 2.2. Show that if θ1, θ2 is another oriented orthonormal coframe then its con-

nection one-form ω is given by ω = ω + dψ with ψ as in exercise 1.4.
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By Exercise 1.4, there is a circle-valued function ψ such that

θ1 = cos(ψ)θ1 + sin(ψ)θ2

θ2 = − sin(ψ)θ1 + cos(ψ)θ2.

Then

dθ1 = − sin(ψ)dψ ∧ θ1 + cos(ψ)dθ1 + cos(ψ)dψ ∧ θ2 + sin(ψ)dθ2

= − sin(ψ)(dψ + ω) ∧ θ1 + cos(ψ)(dψ + ω) ∧ θ2

= (dψ + ω) ∧ (− sin(ψ)θ1 + cos(ψ)θ2)

= (dψ + ω) ∧ θ2

dθ2 = − cos(ψ)dψ ∧ θ1 − sin(ψ)dθ1 − sin(ψ)dψ ∧ θ2 + cos(ψ)dθ2

= − cos(ψ)(dψ + ω) ∧ θ1 − sin(ψ)(dψ + ω) ∧ θ2

= −(dψ + ω) ∧ (cos(ψ)θ1 + sin(ψ)θ2)

= (dψ + ω) ∧ θ1.

Thus, the connection one-form ω is given by ω = ω + dψ.

Exercise 2.3. Show that K does not depend on the orientation. If we reverse the orien-

tation of M then K remains unchanged. In particular M does not need to be oriented for

the Gaussian curvature to be defined.

Assume that M is oriented. Then M has an oriented orthonormal coframe (θ1, θ2) on

a connected neighborhood U of p, for p ∈M.The 2-form θ1∧θ2 determines the orientation

of M. Also, −θ1∧θ2 determines the reversing orientation of M. Let θ1 = −θ1 and θ2 = θ2.

Then

ds2 = (θ1)2 + (θ2)2.

Also,

dθ1 = −ω ∧ θ2

dθ2 = −ω ∧ θ2 = ω ∧ θ1.

Let ω = −ω. Then dω = −Kθ1 ∧ θ2. Thus, K remains unchanged.
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Exercise 2.4. Compute the Cartan structure equations and find the Gaussian curvature

K in the following two cases :

ds2 = dr2 + f(r)2dθ2 (1)

ds2 = λ(u, v)2(du2 + dv2). (2)

(1) Assume that f(r) is a nowhere vanishing function. Let θ1 = dr and θ2 = f(r)dθ.

dθ1 = 0

dθ2 = −
(
∂f

∂r
dθ

)
∧ dr.

Let ω =
∂f

∂r
dθ. Then dω =

∂2f

∂r2
dr ∧ dθ =

∂2f

∂r2
· 1

f(r)
θ1 ∧ θ2. Thus, the curvature is

−∂
2f

∂r2
· 1

f(r)
.

(2) Assume that λ(u, v) is a nowhere vanishing function. Let θ1 = λ(u, v)du and

θ2 = λ(u, v)dv.

dθ1 = −∂λ
∂v

du ∧ dv =

(
−∂λ
∂v
· 1

λ
du

)
∧ λdv =

(
−∂λ
∂v
· 1

λ
du+

∂λ

∂u
· 1

λ
dv

)
∧ θ2

dθ2 =
∂λ

∂u
du ∧ dv =

(
−∂λ
∂u
· 1

λ
dv

)
∧ λdu = −

(
−∂λ
∂v
· 1

λ
du+

∂λ

∂u
· 1

λ
dv

)
∧ θ1.

Let ω = −∂λ
∂v ·

1
λ du+ ∂λ

∂u ·
1
λ dv = (log λ)u dv − (log λ)v du. Then

dω = [(log λ)uu + (log λ)vv] du ∧ dv = 4(log λ) · 1

λ2
θ1 ∧ θ2.

Thus,

K = −4 (log λ) · 1

λ2
.

Exercise 2.6. Find f as in (1) of exer 2.4 such that K = −1 and f has first order Taylor

expansion f(r) = r +O(r2).

From (1) in exercise 2.4,
∂2f

∂r2
· 1

f(r)
= 1. Then

∂2f

∂r2
= f(r). Hence,

f(r) = c1e
r + c2e

−r
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for any constants c1, c2. By the assumption, f(0) = 0 and f ′(0) = 1.

0 = f(0) = c1 + c2

1 = f ′(0) = c1 − c2.

Hence, c1 = 1
2 and c2 = −1

2 . Thus, f(r) = sinh(r).


