Problem. Let $M^2 \subset \mathbb{R}^3$ be embedded surface. Then the induced metric on M^2 is obtained by taking the standard inner product on \mathbb{R}^3 and restricting it to the tangent planes $T_mM \subset \mathbb{R}^3$ to the surface. In this way we obtain a smoothly varying inner product on the tangent bundle of M: a Riemannian metric.

Exercise 0.1. Standard spherical coordinates on $M^2 = S^2$, the unit two-sphere, are $\overrightarrow{x}(\theta,\phi) = (\cos(\theta)\sin(\phi),\sin(\theta)\sin(\phi),\cos(\phi))$. Compute that $d\overrightarrow{x}\cdot d\overrightarrow{x} = d\phi^2 + \sin^2(\phi)d\theta^2$.

 $\overrightarrow{dx} = (-\sin(\theta)\sin(\phi)d\theta + \cos(\theta)\cos(\phi)d\phi, \cos(\theta)\sin(\phi)d\theta + \sin(\theta)\cos(\phi)d\phi, -\sin(\phi)d\phi).$ Thus,

$$d\overrightarrow{x} \cdot d\overrightarrow{x} = \sin^2(\theta)\sin^2(\phi)d\theta^2 + \cos^2(\theta)\cos^2(\phi)d\phi^2 - 2\sin(\theta)\sin(\phi)\cos(\theta)\cos(\phi)d\theta d\phi$$
$$+\cos^2(\theta)\sin^2(\phi)d\theta^2 + \sin^2(\theta)\cos^2(\phi)d\phi^2 + 2\sin(\theta)\sin(\phi)\cos(\theta)\cos(\phi)d\theta d\phi$$
$$+\sin^2(\phi)d\phi.$$
$$= d\phi^2 + \sin^2(\phi)d\theta^2.$$

Exercise 1.1. Verify that if we apply GS to the coordinate basis $\frac{\partial}{\partial u}$, $\frac{\partial}{\partial v}$ associated to Gauss' form

$$ds^2 = E(u, v)du^2 + 2F(u, v)dudv + G(u, v)dv^2$$

then we get a smooth frame e_1 , e_2 . (Express e_1 , e_2 in terms of E, F, G and $\frac{\partial}{\partial u}$, $\frac{\partial}{\partial v}$. Argue the resulting vector fields are smooth.)

Note that ds^2 is a positive-definite quadratic form on the tangent bundle. Hence, $EG - F^2 > 0$ everywhere. Let

$$\begin{aligned} v_1 &= \partial_u \\ v_2 &= \partial_v - \frac{\partial_v \cdot \partial_u}{\partial_u \cdot \partial_u} \, \partial_u = \partial_v - \frac{F}{E} \, \partial_u. \end{aligned}$$

Then v_1 and v_2 are orthogonal. We can see that

$$\langle v_1, v_1 \rangle = E$$

 $\langle v_2, v_2 \rangle = \frac{F^2}{E} - 2\frac{F^2}{E} + G = \frac{-F^2 + EG}{E}.$

Let

$$e_1 = \frac{1}{\sqrt{E}} \partial_u$$

$$e_2 = \sqrt{\frac{E}{EG - F^2}} \left(\partial_v - \frac{F}{E} \partial_u \right).$$

Then e_1 and e_2 are orthonormal. Since $ds^2(\partial_u, \partial_u) = E \neq 0$, e_1 is a smooth vector field. Since $EG - F^2 > 0$ everywhere, $\sqrt{\frac{E}{EG - F^2}}$ is a smooth function. Hence, e_2 is also a smooth vector field.

Exercise 1.2. Let E_1, E_2 be a frame field and θ^1, θ^2 the dual coframe field. Show that E_1, E_2 is orthonormal if and only if $ds^2 = (\theta^1)^2 + (\theta^2)^2$.

(\Rightarrow) Note that $ds^2 = e(\theta^1)^2 + 2f\theta^1\theta^2 + g(\theta^2)^2$. On the tangent space T_pM for each $p \in M$, the metric tensor $ds^2 : T_pM \times T_pM \to \mathbb{R}$ is a quadratic symmetric bilinear form. For $v, w \in T_pM$, let $v = (v_1, v_2)$ and $w = (w_1, w_2)$ with respect to the basis $E_1(p), E_2(p)$.

Then there is a symmetric matrix $\left[\begin{array}{cc} e & f \\ f & g \end{array}\right] \in GL(2,\mathbb{R})$ such that

$$ds_p^2(v, w) = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} e & f \\ f & g \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}.$$

Then

$$ds_p^2(v, w) = ev_1w_1 + f(v_1w_2 + v_2w_1) + gv_2w_2$$

= $[e(\theta_p^1)^2 + 2f\theta_p^1\theta_p^2 + g(\theta_p^2)^2](v, w).$

Thus,

$$1 = ds_p^2(E_1(p), E_1(p)) = e\theta_p^1(E_1(p))\theta_p^1(E_1(p)) = e$$

$$0 = ds_p^2(E_1(p), E_2(p)) = 2f\frac{1}{2}[\theta^1(E_1(p))\theta^2(E_2(p)) + \theta^1(E_2(p))\theta^2(E_1(p))] = f$$

$$1 = ds_p^2(E_2(p), E_2(p)) = g\theta_p^2(E_1(p))\theta_p^2(E_1(p)) = g.$$

Thus,
$$ds_p^2 = (\theta_p^1)^2 + (\theta_p^2)^2$$
 on $T_p M.q$
 (\Leftarrow) At each point $p \in M$

$$ds_p^2(E_i(p), E_j(p)) = \theta_p^1(E_i(p))\theta_p^1(E_j(p)) + \theta_p^2(E_i(p))\theta_p^2(E_j(p))$$

= δ_{ij} .

Thus, E_1, E_2 is orthonormal.

Exercise 1.3. Let $M \subset \mathbb{R}^3$ be an oriented surface with unit normal vector N. Show that the two-form $\Omega = i_N(dx \wedge dy \wedge dz)$ restricted to M is the area form dA on M. Hint: show that if \overrightarrow{v} , $\overrightarrow{w} \in T_mM$ then $\Omega(\overrightarrow{v}, \overrightarrow{w}) = N \cdot (\overrightarrow{v} \times \overrightarrow{w})$.

Let
$$N = (N_x, N_y, N_z)$$
.

$$\Omega = i_N(dx \wedge dy \wedge dz) = i_N(dx)(dy \wedge dz) - dx \wedge i_N(dy \wedge dz)$$
$$= dx(N)(dy \wedge dz) - dx \wedge (dy(N)dz - dz(N)dy)$$
$$= N_x(dy \wedge dz) - N_y(dx \wedge dz) + N_z(dx \wedge dy).$$

Let
$$\overrightarrow{v} = (v_x, v_y, v_z)$$
 and $\overrightarrow{w} = (w_x, w_y, w_z)$ in $T_m M$. Then

$$\Omega(\overrightarrow{v}, \overrightarrow{w}) = N_x (dy \wedge dz)(\overrightarrow{v}, \overrightarrow{w}) - N_y (dx \wedge dz)(\overrightarrow{v}, \overrightarrow{w}) + N_z (dx \wedge dy)(\overrightarrow{v}, \overrightarrow{w})
= N_x (v_y w_z - w_y v_z) - N_y (v_x w_z - w_x v_z) + N_z (v_x w_y - v_y w_x)
= (N_x, N_y, N_z) \cdot (v_y w_z - w_y v_z, -(v_x w_z - w_x v_z), v_x w_y - v_y w_x)
= N \cdot (\overrightarrow{v} \times \overrightarrow{w}).$$

For any distinct vectors \overrightarrow{v} , $\overrightarrow{w} \in T_m M$, the vector $\overrightarrow{v} \times \overrightarrow{w} = cN$ for a nonzero constant $c \in \mathbb{R}$. Thus, Ω is a nowhere-vanishing 2-form. Hence, Ω is a volume form on M.

Exercise 1.4. Suppose that θ^1 , θ^2 is an oriented orthonormal coframe for M^2 , ds^2 defined on a neighborhood $V \subset M$. Show that the pair of one-forms $\overline{\theta^1}$, $\overline{\theta^2}$, also defined on V, is also an oriented orthonormal coframe if and only if there is a circle-valued function $\psi: V \to S^1$ such that on V we have that:

$$\overline{\theta^1} = \cos(\psi)\theta^1 + \sin(\psi)\theta^2$$
$$\overline{\theta^2} = -\sin(\psi)\theta^1 + \cos(\psi)\theta^2$$

 (\Rightarrow) Let

$$\overline{\theta^1} = f_1 \theta^1 + f_2 \theta^2$$
$$\overline{\theta^2} = g_1 \theta^1 + g_2 \theta^2$$

Since $ds^2 = (\overline{\theta^1})^2 + (\overline{\theta^2})^2$ and $ds^2 = (\theta^1)^2 + (\theta^2)^2$,

$$(f_1)^2 + (g_1)^2 = 1$$
, $(f_2)^2 + (g_2)^2 = 1$ and $f_1 f_2 + g_1 g_2 = 0$.

Also, $f_1g_2-g_1f_2=1$ because $\theta_1 \wedge \theta_2=\overline{\theta_1} \wedge \overline{\theta_2}$. Thus, for each $p \in M$ and on a neighborhood V of p, the matrix

$$\begin{bmatrix} f_1(p) & g_1(p) \\ f_2(p) & g_2(p) \end{bmatrix} \in SO(2, \mathbb{R}).$$

Then there is a circle-valued function $\psi: V \to S^1$ such that

$$\begin{bmatrix} f_1(p) & g_1(p) \\ f_2(p) & g_2(p) \end{bmatrix} = \begin{bmatrix} \cos(\psi(p)) & -\sin(\psi(p)) \\ \sin(\psi(p)) & \cos(\psi(p)) \end{bmatrix}.$$

Thus, on V

$$\overline{\theta^1} = \cos(\psi)\theta^1 + \sin(\psi)\theta^2$$

$$\overline{\theta^2} = -\sin(\psi)\theta^1 + \cos(\psi)\theta^2$$

 (\Leftarrow) We can easily see that $(\overline{\theta^1})^2 + (\overline{\theta^2})^2 = (\theta^1)^2 + (\theta^2)^2 = ds^2$ and $\overline{\theta^1} \wedge \overline{\theta^2} = \theta^1 \wedge \theta^2$.

Exercise 2.1. Given the oriented orthonormal coframe θ^1, θ^2 , show that the Cartan's structure formula uniquely determines ω .

Let $\omega = \alpha \theta^1 + \beta \theta^2$ for scalar function α, β . Then

$$d\theta^{1} = \omega \wedge \theta^{2} = (\alpha \theta^{1} + \beta \theta^{2}) \wedge \theta^{2} = \alpha \theta^{1} \wedge \theta^{2}$$

$$d\theta^{2} = -\omega \wedge \theta^{2} = -(\alpha \theta^{1} + \beta \theta^{2}) \wedge \theta^{1} = \beta \theta^{1} \wedge \theta^{2}.$$

Let $\omega' = \alpha' \theta^1 + \beta' \theta^2$ be another one-form satisfying the Cartan's structure equation. Then $\alpha' = \alpha$ and $\beta' = \beta$.

Exercise 2.2. Show that if $\overline{\theta^1}$, $\overline{\theta^2}$ is another oriented orthonormal coframe then its connection one-form $\overline{\omega}$ is given by $\overline{\omega} = \omega + d\psi$ with ψ as in exercise 1.4.

By Exercise 1.4, there is a circle-valued function ψ such that

$$\overline{\theta^1} = \cos(\psi)\theta^1 + \sin(\psi)\theta^2$$

$$\overline{\theta^2} = -\sin(\psi)\theta^1 + \cos(\psi)\theta^2.$$

Then

$$d\overline{\theta^{1}} = -\sin(\psi)d\psi \wedge \theta^{1} + \cos(\psi)d\theta^{1} + \cos(\psi)d\psi \wedge \theta^{2} + \sin(\psi)d\theta^{2}$$

$$= -\sin(\psi)(d\psi + \omega) \wedge \theta^{1} + \cos(\psi)(d\psi + \omega) \wedge \theta^{2}$$

$$= (d\psi + \omega) \wedge (-\sin(\psi)\theta^{1} + \cos(\psi)\theta^{2})$$

$$= (d\psi + \omega) \wedge \overline{\theta^{2}}$$

$$d\overline{\theta^{2}} = -\cos(\psi)d\psi \wedge \theta^{1} - \sin(\psi)d\theta^{1} - \sin(\psi)d\psi \wedge \theta^{2} + \cos(\psi)d\theta^{2}$$

$$= -\cos(\psi)(d\psi + \omega) \wedge \theta^{1} - \sin(\psi)(d\psi + \omega) \wedge \theta^{2}$$

$$= -(d\psi + \omega) \wedge (\cos(\psi)\theta^{1} + \sin(\psi)\theta^{2})$$

$$= (d\psi + \omega) \wedge \overline{\theta^{1}}.$$

Thus, the connection one-form $\overline{\omega}$ is given by $\overline{\omega} = \omega + d\psi$.

Exercise 2.3. Show that K does not depend on the orientation. If we reverse the orientation of M then K remains unchanged. In particular M does not need to be oriented for the Gaussian curvature to be defined.

Assume that M is oriented. Then M has an oriented orthonormal coframe (θ^1, θ^2) on a connected neighborhood U of p, for $p \in M$. The 2-form $\theta^1 \wedge \theta^2$ determines the orientation of M. Also, $-\theta^1 \wedge \theta^2$ determines the reversing orientation of M. Let $\overline{\theta^1} = -\theta^1$ and $\overline{\theta^2} = \theta^2$. Then

$$ds^2 = (\overline{\theta^1})^2 + (\overline{\theta^2})^2.$$

Also,

$$\begin{split} d\overline{\theta^1} &= -\omega \wedge \overline{\theta^2} \\ d\overline{\theta^2} &= -\omega \wedge \theta^2 = \omega \wedge \overline{\theta^1}. \end{split}$$

Let $\overline{\omega} = -\omega$. Then $d\overline{\omega} = -K\overline{\theta^1} \wedge \overline{\theta^2}$. Thus, K remains unchanged.

Exercise 2.4. Compute the Cartan structure equations and find the Gaussian curvature K in the following two cases:

$$ds^2 = dr^2 + f(r)^2 d\theta^2 \tag{1}$$

$$ds^{2} = \lambda(u, v)^{2}(du^{2} + dv^{2}). \tag{2}$$

(1) Assume that f(r) is a nowhere vanishing function. Let $\theta_1 = dr$ and $\theta_2 = f(r)d\theta$.

$$d\theta_1 = 0$$

 $d\theta_2 = -\left(\frac{\partial f}{\partial r}d\theta\right) \wedge dr.$

Let $\omega = \frac{\partial f}{\partial r} d\theta$. Then $d\omega = \frac{\partial^2 f}{\partial r^2} dr \wedge d\theta = \frac{\partial^2 f}{\partial r^2} \cdot \frac{1}{f(r)} \theta_1 \wedge \theta_2$. Thus, the curvature is $-\frac{\partial^2 f}{\partial r^2} \cdot \frac{1}{f(r)}$.

(2) Assume that $\lambda(u,v)$ is a nowhere vanishing function. Let $\theta_1 = \lambda(u,v)du$ and $\theta_2 = \lambda(u,v)dv$.

$$d\theta_1 = -\frac{\partial \lambda}{\partial v} du \wedge dv = \left(-\frac{\partial \lambda}{\partial v} \cdot \frac{1}{\lambda} du \right) \wedge \lambda dv = \left(-\frac{\partial \lambda}{\partial v} \cdot \frac{1}{\lambda} du + \frac{\partial \lambda}{\partial u} \cdot \frac{1}{\lambda} dv \right) \wedge \theta_2$$
$$d\theta_2 = \frac{\partial \lambda}{\partial u} du \wedge dv = \left(-\frac{\partial \lambda}{\partial u} \cdot \frac{1}{\lambda} dv \right) \wedge \lambda du = -\left(-\frac{\partial \lambda}{\partial v} \cdot \frac{1}{\lambda} du + \frac{\partial \lambda}{\partial u} \cdot \frac{1}{\lambda} dv \right) \wedge \theta_1.$$

Let $\omega = -\frac{\partial \lambda}{\partial v} \cdot \frac{1}{\lambda} du + \frac{\partial \lambda}{\partial u} \cdot \frac{1}{\lambda} dv = (\log \lambda)_u dv - (\log \lambda)_v du$. Then

$$d\omega = \left[(\log \lambda)_{uu} + (\log \lambda)_{vv} \right] du \wedge dv = \triangle (\log \lambda) \cdot \frac{1}{\lambda^2} \theta_1 \wedge \theta_2.$$

Thus,

$$K = -\triangle (\log \lambda) \cdot \frac{1}{\lambda^2}.$$

Exercise 2.6. Find f as in (1) of exer 2.4 such that K = -1 and f has first order Taylor expansion $f(r) = r + \mathcal{O}(r^2)$.

From (1) in exercise 2.4,
$$\frac{\partial^2 f}{\partial r^2} \cdot \frac{1}{f(r)} = 1$$
. Then $\frac{\partial^2 f}{\partial r^2} = f(r)$. Hence,

$$f(r) = c_1 e^r + c_2 e^{-r}$$

for any constants c_1 , c_2 . By the assumption, f(0) = 0 and f'(0) = 1.

$$0 = f(0) = c_1 + c_2$$

$$1 = f'(0) = c_1 - c_2.$$

Hence, $c_1 = \frac{1}{2}$ and $c_2 = -\frac{1}{2}$. Thus, $f(r) = \sinh(r)$.