Math 209 Riemannian Geometry

Jeongmin Shon

Problem. Let M? C R? be embedded surface. Then the induced metric on M? is ob-
tained by taking the standard inner product on R? and restricting it to the tangent planes
T,,M C R3 to the surface. In this way we obtain a smoothly varying inner product on

the tangent bundle of M: a Riemannian metric.

Exercise 0.1. Standard spherical coordinates on M? = S2, the unit two-sphere, are

Z(0,) = (cos(h) sin(¢), sin() sin(¢), cos(¢)). Compute that d@ -dT = dp>+sin?(¢) db>.

d@ = (—sin() sin(¢)dh+cos(8) cos(¢)de, cos(6) sin(p)do-+sin(0) cos(¢)dep, — sin(¢)de).
Thus,

d7 - d7 = sin(0) sin?(¢)d6? + cos®(0) cos®(¢)dp? — 2 sin(0) sin(¢) cos(6) cos(¢)dfded
+ cos?(0) sin?(¢)dO? + sin?(0) cos? (¢)dd? + 2 sin(6) sin(¢) cos(6) cos(d)dOde
+ sin?(¢)d¢.
= d¢? + sin®(¢) d6>.

Exercise 1.1. Verify that if we apply GS to the coordinate basis %, % associated to

Gauss’ form
ds* = E(u,v)du® + 2F (u, v)dudv + G(u,v)dv?

then we get a smooth frame e, ea. (Express ej, ey in terms of F, F, G and %, 8%' Argue

the resulting vector fields are smooth.)

Note that ds? is a positive-definite quadratic form on the tangent bundle. Hence,

EG — F? > 0 everywhere. Let

’Ulzau

Oy 0y, . F
5 g Ou =00~ 5 0u

’ngav—



Then v; and vy are orthogonal. We can see that
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Then e; and e are orthonormal. Since dsg(au, Ou) = E # 0, e is a smooth vector field.
Since EG — F? > 0 everywhere, 4/ ﬁ is a smooth function. Hence, es is also a smooth

vector field.

Exercise 1.2. Let Ei, F> be a frame field and 6%, 6% the dual coframe field. Show that
E1, E5 is orthonormal if and only if ds? = ()2 + (62)2.

(=) Note that ds? = e(0')? + 20102 + g(6?)2. On the tangent space T,M for each
p € M, the metric tensor ds? : T,M x T,M — R is a quadratic symmetric bilinear form.
For v,w € T,M, let v = (v1,v2) and w = (w1, wz) with respect to the basis E£1(p), Ea2(p).

Then there is a symmetric matrix [ ¢ f € GL(2,R) such that
g
dsz(v,w) = [v1 v9] ¢/ ] [ b ] .
f g wy

Then

dszz,(v, w) = eviwy + f(viwa + vawy) + guaws

= [6(9;)2 + 2f0]1)9127 + 9(92)2](11, w).
Thus,

1 = ds2(E1(p), B1(p)) = efL(E1(p)05(E1(p)) = e
0= d(Er(p). Bo(p)) = 26 10" (Ea (0))0*(Ex(p) + 0" (Ba(p))O*(Er(9)] =

1 = ds2(Ex(p), B2(p)) = g02(Er(p))02(E1(p) = g.



Thus, ds? = (6)* + (62)? on T,M.q
(<) At each point p € M

Thus, E1, > is orthonormal.

Exercise 1.3. Let M C R? be an oriented surface with unit normal vector N. Show that
the two-form Q = ix(dz Ady A dz) restricted to M is the area form dA on M. Hint: show
that if ¥/, W € T,,,M then Q(V, @) =N - (7 x @).

Let N = (Ny, Ny, N.).

Q=in(dzNdyNdz)=in(dx)(dy Ndz) —dz Niny(dy A dz)
=dz(N)(dy Ndz) — dx A (dy(N)dz — dz(N)dy)
= N,(dy Ndz) — Ny(dz A dz) + N, (dz A dy).

Let ¥ = (vg, vy, v;) and W = (wg, wy,w,) in T, M. Then

Q(V, W) = No(dy Ad2)(V, @) — Ny(dz A dz) (0, &) + N,(dz A dy)(V, &)
= Np(vyw, — wyv,) — Ny(vaw, — wevy) + N, (vpwy — vywy)

= (Ng, Ny, N;) - (vyw, — wyv,, — (0w, — Wevy), VpWy — VyWy,)

=N - (U x W).

For any distinct vectors 7, W e T, M , the vector U x W = ¢N for a nonzero constant

¢ € R. Thus, Q is a nowhere-vanishing 2-form. Hence, €2 is a volume form on M.

Exercise 1.4. Suppose that 6!, 6% is an oriented orthonormal coframe for M?, ds? defined
on a neighborhood V' C M. Show that the pair of one-forms 01, 62, also defined on V, is also
an oriented orthonormal coframe if and only if there is a circle-valued function ¢ : V — S*

such that on V we have that:

01 = cos(1))0' + sin(v)6?
02 = —sin(¢))0' + cos(1))6?



(=) Let
01 = 160" + f»6?
02 = 910" + 9262
Since ds? = (A1)% 4 (62) and ds® = (6")% + (6%)?,
A2+ (@) =1, (f2)°+(92)>=1 and fifo+gig2=0.

Also, figa—gifo = 1 because 01 Ay = 01 Af,. Thus, for each p € M and on a neighborhood
V of p, the matrix

[ filp) a1(p) € SO(2,R).

f2(p)  g2(p)

Then there is a circle-valued function ¢ : V' — S' such that
[ fip) () ] _ [ cos(¥(p))  —sin(u(p)) ] |
fa(p)  g2(p) sin(¢(p))  cos(4(p))
Thus, on V

01 = cos(¢))0" + sin(v))6>

02 = —sin(1)0" + cos(¢))6>.
(<) We can easily see that (61)2 + (62)% = (61)% 4 (6%)%2 = ds® and 01 A 62 = 61 A H2.
Exercise 2.1. Given the oriented orthonormal coframe 6!,6%, show that the Cartan’s

structure formula uniquely determines w.

Let w = af' + B6? for scalar function a, 3. Then
do' = w A 6? = (af + BO*) A O = a 0 A 62
do* = —w A 0* = —(ab' + BO*) A O =3 01 A 6%

Let w’ = o/0' + 36? be another one-form satisfying the Cartan’s structure equation. Then
o =aand B = 6.

Exercise 2.2. Show that if 1,62 is another oriented orthonormal coframe then its con-

nection one-form @ is given by w = w + dy with 9 as in exercise 1.4.



By Exercise 1.4, there is a circle-valued function ¢ such that

01 = cos(1))0' + sin(v))h>

02 = —sin(1))0" + cos(¢)6>.
Then

dft = —sin(v)de A O + cos(v)d + cos(v)dyp A 62 + sin(v))db?
= —sin(e)(dy) + w) A 0 + cos(¢) (dip + w) A 62
= (dip +w) A (—sin(y)0" + cos(1)6?)
= (dy) +w) A 62

d62? = — cos(v)dyp A 0 — sin(y)df — sin(vp)dep A 62 + cos(vp)db?
= —cos(V)(dyp +w) A O — sin(y) (dp + w) A 62
= —(dy + w) A (cos()8" + sin(4))6?)
= (dip +w) A O

)
)

Thus, the connection one-form @ is given by w = w + d.

Exercise 2.3. Show that K does not depend on the orientation. If we reverse the orien-
tation of M then K remains unchanged. In particular M does not need to be oriented for

the Gaussian curvature to be defined.

Assume that M is oriented. Then M has an oriented orthonormal coframe (6%, 62) on
a connected neighborhood U of p, for p € M.The 2-form 6! A#? determines the orientation
of M. Also, —0* A6? determines the reversing orientation of M. Let §1 = —#' and 62 = 62.
Then

ds? = (01)% + (62)°.
Also,

dot = —w A 62

do2 = —w A 6% = w A B

Let @ = —w. Then dw = —KO' A 2. Thus, K remains unchanged.



Exercise 2.4. Compute the Cartan structure equations and find the Gaussian curvature

K in the following two cases :

ds* = dr® + f(r)%de* (1)
ds® = Mu,v)?(du® + dv?). (2)

(1) Assume that f(r) is a nowhere vanishing function. Let 6, = dr and 0y = f(r)d6.

dfL =0
dfy = — (afaw) A dr.
or
of 0% f 0% f 1 .
Let w = —rdﬁ. Then dw = Wdr Adf = 52 mel A 0. Thus, the curvature is
Lor 1
orz f(r)

(2) Assume that A(u,v) is a nowhere vanishing function. Let 6; = A(u,v)du and

O = \(u,v)dv.

oA ox 1 ox 1 ox 1
oA ox 1 ox 1 ox 1

Let w = —g—i -+ du+ % -+ dv = (log \)y dv — (log A) du. Then
1
dw = [(log A)uu + (1og A)yy] du A dv = A(log N) - 2 61 A Oa.

Thus,

1
K=~ A(logh) - 53

Exercise 2.6. Find f as in (1) of exer 2.4 such that K = —1 and f has first order Taylor
expansion f(r) =r + O(r?).
2f 1 0 f

From (1) in exercise 2.4, 77 0 = 1. Then 52 = f(r). Hence,

fr)y=ce" +coe™"



for any constants ¢1, co. By the assumption, f(0) = 0 and f/(0) = 1.

0=f(0)=c1+c
1= f/(O) =1 — Co.

Hence, ¢1 = 3 and ¢ = —3. Thus, f(r) = sinh(r).



