Homework 7 - Math 209

Shawn Tsosie

March 5, 2014

Exercise 1.

Proof. Let θ be a non-vanishing form such that $\theta \wedge d \theta=0$ everywhere. Then, we know that $d \theta=\theta \wedge \alpha$ for some one-form α. This is because of the following (let X be a vector):

$$
\iota_{X}(\theta \wedge d \theta)=\left(\iota_{X} \theta\right) \wedge d \theta-\theta \wedge\left(\iota_{X} d \theta\right)=\theta(X) \wedge d \theta-\theta \wedge\left(\iota_{X} d \theta\right)
$$

where $\iota_{X}(\theta)=\theta(X)$. Now, $\iota_{X}(\theta \wedge d \theta)=\iota_{X}(0)=0$ and so we choose X to be dual to θ and we get

$$
0=d \theta-\theta \wedge \alpha
$$

where $\alpha=\iota_{X}(d \theta)$ and so $d \theta=\theta \wedge \alpha$.
We note that $\operatorname{ker}(\theta)$ defines a smooth distribution by the 1 -form Criterion for Smooth Distributions (this means that if we have an n-dimensional manifold, then we have a rank k distribution D if and only if there are $n-k$ one-forms such that $\left.D_{q}=\left.\bigcap_{i=1}^{n-k} \operatorname{ker} \omega^{i}\right|_{q}\right)$. We further note that
$d \theta(X, Y)=X(\theta(Y))-Y(\theta(X))-\theta([X, Y])=X(0)-Y(0)-\theta([X, Y])=-\theta([X, Y])$.
We also have $d \theta(X, Y)=\theta \wedge \alpha(X, Y)=\theta(X) \alpha(Y)-\theta(Y) \alpha(X)=0-0=0$. Thus, we have $\theta([X, Y])=0$ and so our distribution is involutive and therefore completely integrable by the Frobenius Theorem.

Since D is completely integrable, by definition, for all $q \in \mathbb{R}^{3}$, there exists a smooth coordinate chart (U, φ) such that $\varphi(U)$ is a cube in \mathbb{R}^{3} and for all $q \in U$, D_{q} is spanned by $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$. So, $T_{q} \mathbb{R}^{3}$ is spanned by $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial x}\right)$, where z is given by $\varphi(q)=(x(q), y(q), z(q))$. Now, $d z_{q}$ has the same kernel as θ_{q}. Note that since they are both linear functionals on $T_{q} \mathbb{R}^{3}$, they are multiples of each other.

Let $\left\{U_{q}, \varphi_{q}\right\}$ be the flat charts that cover \mathbb{R}^{3} and let $\left\{\rho_{\alpha}\right\}$ be a partition of unity subordinate to $\left\{U_{q}\right\}$. On each coordinate chart, let $g_{q}=z_{q}$, so $d g_{q}=d z_{q}$. Further, let $\omega=\sum \rho_{\alpha} d g_{q}$. We have

$$
d\left(\sum \rho_{\alpha} d g_{q}\right)=\sum\left(d \rho_{\alpha}\right) \wedge d z_{q}=d\left(\sum \rho_{\alpha}\right) \wedge d z_{q}=d(1) \wedge d z_{q}=0
$$

We have linearity, because at each point q, the sum is a finite sum. So, we see that ω is a closed form and as $H_{\mathrm{dR}}^{1}\left(\mathbb{R}^{3}\right)$ is trivial, that means ω is an exact form, therefore, there exists a g such that $\omega=d g$.

Now, we have to show that ω and θ have the same kernel, they they are multiples of each other (again, because at a point they are linear functionals) and this will mean that $\theta=f d g$.

Now, it's clear that $\operatorname{ker} \theta \subset \operatorname{ker} \omega$, by construction of ω.
So, we must show that $\operatorname{ker} \omega \subset \operatorname{ker} \theta$. So, to this end, we want to show if we have two charts, $\left(U_{p}, \varphi_{p}\right)$ and $\left(U_{q}, \varphi_{q}\right)$ containing points p and q, respectively and such that $U_{p} \cap U_{q} \neq \varnothing$, then $d z_{q}=\lambda d z_{p}$, where $\lambda \neq 0$ is positive. But we can do this, because of the orientability of \mathbb{R}^{3}. Therefore, there exists, $f, g \in C^{\infty}\left(\mathbb{R}^{3}\right)$ such that $\theta=f d g$.

Exercise 2.

Proof. The proof outlined above will not work if the manifold is not orientable or there exists a closed one-form that is not exact, i.e. the first de Rham cohomology group is not trivial.

Exercise 3.

Proof. We did not use the dimension in the argument for Exercise 1, so the proof will carry over to \mathbb{R}^{n}, because it is orientable and $H_{\mathrm{dR}}^{1}\left(\mathbb{R}^{n}\right)=0$.

Exercise 4.

Proof. This will not work for the same reasons we outlined in Exercise 2.

