MATH 209, MANIFOLDS II, WINTER 2014

Solutions.

Below, F, G are vector fields, α, β are forms and f, g is a (scalar) function. ∇ is the differential operator of vector calculus so that $\nabla f=\operatorname{grad}(f), \nabla \times F=\operatorname{curl}(F)$ and $\nabla \cdot F=$ $\operatorname{div}(F)$.

TABLE 1. Comparison of vector calculus and exterior differential calculus

Vector Calculus Formulae	Exterior Differential Calculus
\mathbb{R}^{3}	manifold M^{n}
linearity for ∇ :	linearity for d :
$\nabla(f+c g)=\nabla f+c \nabla g$	$d(\alpha+c \beta)=d \alpha+c d \beta$
$\nabla \times(F+c G)=\nabla \times F+c \nabla \times G$	same as above
$\nabla \cdot(F+c G)=\nabla \cdot G+c \nabla \cdot G$	same as above
Liebnitz for ∇	Liebnitz for d
$\nabla(f g)=f \nabla g+g \nabla g$	$d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{\|\alpha\|} \alpha \wedge d \beta$
$\nabla \times(f F)=f \nabla \times F+\times \nabla f \times F$	same as above
$\nabla \cdot(f F)=\nabla f \cdot F+\nabla f \cdot F$	same as above
mixed partials commute	$d^{2}=0$:
$\nabla \times(\nabla f)=0$	$d^{2} \alpha=0$
$\nabla \cdot(\nabla \times F)=0$	same as above
-----------------	Poincairé lemma, which says:
If the domain of F is \mathbb{R}^{3} or a contractible open subset thereof:	If the domain of α is \mathbb{R}^{n} or a contractible open subse
curl-free implies conservative: $\nabla \times F=0 f \Longrightarrow F=\nabla f$	$d \alpha=0 \Longrightarrow \alpha=d \beta$
div.-free implies a curl: $\nabla \cdot F=0 \Longrightarrow F=\nabla \times G$	same
and the integral identities!	Stokes' formula
Stokes : $\int_{S}(\nabla \times F) \cdot n d S=\int_{C} F \cdot d s$	$\int_{\Sigma} d \alpha=\int \partial \Sigma \alpha$
Divergence or Gauss Thm: $\int_{R}(\nabla \cdot F) d V=\int_{S} F \cdot n d S$	same as above
Laplacian: $\Delta=\nabla^{2}=\operatorname{div}(\mathrm{grad})$	HODGE Laplacian. Requires a Riem metric g
$\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$	$\Delta=(d+\delta)^{2} ; \delta=d^{*}=(-1)^{X} * d *$
$\nabla^{2}(f g)=f \nabla^{2} g+2 \nabla f \cdot \nabla g+g \nabla^{2} f$	$\Delta(f g)=f \Delta g+2 \nabla f \cdot \nabla g+g \Delta f$

