MATH 209, MANIFOLDS II, WINTER 2014

Solutions.

Below, F, G are vector fields, α, β are forms and f, g is a (scalar) function. ∇ is the differential operator of vector calculus so that $\nabla f = grad(f), \nabla \times F = curl(F)$ and $\nabla \cdot F = div(F)$.

TABLE 1. Comparison of vector calculus and exterior differential calculus

Vector Calculus Formulae	Exterior Differential Calculus
\mathbb{R}^3	manifold M^n
linearity for ∇ :	linearity for d :
$\nabla(f + cg) = \nabla f + c\nabla g$	$d(\alpha + c\beta) = d\alpha + cd\beta$
$\nabla \times (F + cG) = \nabla \times F + c\nabla \times G$	same as above
$\nabla \cdot (F + cG) = \nabla \cdot G + c\nabla \cdot G$	same as above
Liebnitz for ∇	Liebnitz for d
$\nabla(fg)=f\nabla g+g\nabla g$	$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{ \alpha } \alpha \wedge d\beta$
$\nabla \times (fF) = f\nabla \times F + \times \nabla f \times F$	same as above
$\nabla \cdot (fF) = \nabla f \cdot F + \nabla f \cdot F$	same as above
mixed partials commute	$d^2 = 0$:
abla imes (abla f) = 0	$d^2 \alpha = 0$
$\nabla \cdot (\nabla \times F) = 0$	same as above
	Poincairé lemma, which says:
If the domain of F is \mathbb{R}^3 or a contractible open subset thereof:	If the domain of α is \mathbb{R}^n or a contractible open subset
curl-free implies conservative: $\nabla \times F = 0f \implies F = \nabla f$	$dlpha = 0 \implies lpha = deta$
divfree implies a curl: $\nabla \cdot F = 0 \implies F = \nabla \times G$	same
and the integral identities!	Stokes' formula
Stokes : $\int_{S} (\nabla \times F) \cdot n dS = \int_{C} F \cdot ds$	$\int_{\Sigma} d\alpha = \int \partial \Sigma \alpha$
Divergence or Gauss Thm: $\int_R (\nabla \cdot F) dV = \int_S F \cdot n dS$	same as above
$\text{Laplacian:} \Delta = \nabla^2 = div(grad)$	HODGE Laplacian. Requires a Riem metric g
$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$	$\Delta = (d+\delta)^2; \delta = d^* = (-1)^X * d*$
$\nabla^2(fg) = f \nabla^2 g + 2 \nabla f \cdot \nabla g + g \nabla^2 f$	$\Delta(fg) = f\Delta g + 2\nabla f \cdot \nabla g + g\Delta f$