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Veronese Surface
1.a) Let V be the vector space of real symmetric three-by-three matrices with trace

zero. Let (xij), 1 ≤ i, j,≤ 3 be coordinates on Mat3(R). Then V is the zero set of the
linear equations:

x11 + x22 + x33 = 0

x12 − x21 = 0

x13 − x31 = 0

x23 − x32 = 0

which are independant. Therefore V is 9− 4 = 5 dimensional.
1.b) The group SO(3) acts on V by conjugation: g ·M = gMgt, g ∈ SO(3), M ∈ V.

Endow V with the inner product

〈M,S〉 = tr(MS);M,S ∈ V

The action of SO(3) on V is smooth because the action is polynomial in the coordinates
(xij). The action is by isometries because trace is invariant under conjugation

〈gM, gS〉 = tr(gMSgt) = tr(MS) = 〈M,S〉

1.c) Consider S4 ⊂ V, S4 = {M ∈ V : 〈M,M〉 = 1}. Because SO(3) acts by isometries,
we may restrict the action of SO(3) on V to S4. To determine the orbits of the action of
SO(3) on S4, we consider the eigenvalue decomposition of symmetric matrices. Any real
symmetric matrix may be diagonalized by an element of SO(3). Hence for every M ∈ S4,
there is a g ∈ SO(3) such that g ·M = gMgt = D where D is a diagonal matrix. Therefore
every orbit of the action of SO(3) on S4 contains a diagonal matrix, and to determine the
orbits of SO(3), we may just consider SO(3) ·D for diagonal matrices D ∈ S4.

Now we observe that since the action of SO(3) on S4 is by conjugation, all the matrices
in the same orbit will have the same eigenvalues. This means in particular, for diagonal
matrices, that two diagonal matrices can only possibly be in the same orbit if their diagonal
entries differ by a permutation. Furthermore, for a diagonal matrix D, all the possible
permutations of the diagonal entries are realized by the action of SO(3) since the symmetric
group S3 acts on the diagonal entries of D via conjugation by elements of SO(3). That is,
if we use the usual cycle notation for the symmetric group, and let 1 = d11, 2 = d22, 3 = d33

be the diagonal entries of D, S3 acts on D via the following elements of SO(3):

(123) =

 0 0 1

1 0 0

0 1 0

 (132) =

 0 1 0

0 0 1

1 0 0

 (12) =

 0 1 0

−1 0 0

0 0 1


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(23) =

 1 0 0

0 0 1

0 −1 0

 (13) =

 0 0 1

0 1 0

−1 0 0

 id =

 1 0 0

0 1 0

0 0 1


Therefore, an orbit of SO(3) is completely determined by specifying the eigenvalues

because each orbit will contain all the diagonal matrices with those specified eigenvalues.
We conclude that there are two possible orbit types. Orbits with 3 distinct eigenvalues and
orbits with 2 distinct eigenvalues (orbits with only 1 eigenvalue are ruled out because the
only traceless diagonal matrix with exactly 1-eigenvalue is 0 and 0 6∈ S4).

first half of 2.c)&1.d) First we consider when the orbit has 2 distinct eigenvalues.
Then one of the diagonal matrices in the orbit will be of the form

D =

 d11 0 0

0 d11 0

0 0 −2d11


Since 〈D,D〉 = 1, we may solve for d11 = ± 1√

6
. Hence there are exactly two orbits of

SO(3) with two distinct eigenvalues, and each of the orbits contains exactly three diagonal
matrices given by the three possible permutations of the diagonal elements of D.

1.c) cont. To determine the geometric nature of the orbits, we calculate the isotropy
group of D. Let H ⊂ SO(3) denote the isotropy group of D. Then g = (aij) ∈ H if and
only if gH = Hg. That is, if and only if d11a11 d11a12 −2d11a13

d11a21 d11a22 −2d11a23

d11a31 d11a32 −2d11a33

 =

 d11a11 d11a12 d11a13

d11a21 d11a22 d11a23

−2d11a31 −2d11a32 −2d11a33


Hence a13 = a31 = a23 = a32 = 0, which implies a33 = ±1. If a33 = ±1, in order for
g ∈ SO(3), it must be the case that a11 a12

a21 a22

 =

 ± cos(θ) sin(θ)

∓ sin(θ) cos(θ)


The matrices in the upper left corner of g clearly hint that H ∼= O(2), and since −1 ·−1 = 1
and −1 ·1 = −1 the ±1 in the bottom right corner is compatible with the multiplication of
the upper left corner in O(2). Therefore H ∼= O(2). We’ve shown that the 2 orbits of SO(3)
with 2 distinct eigenvalues are diffeomorphic to SO(3)/O(2). Since O(2) is 1-dimensional,
and SO(3) is 3 dimensional, these orbits have dimension 3− 1 = 2.

1.c)cont.& second half of 2.c) We now consider the case when the orbit has 3
distinct eigenvalues. Then the diagonal matrices in the orbit will be of the form

2



Joe Ferrara

D =

 d11 0 0

0 d22 0

0 0 d33


where d11, d22, d33 are pairwise distinct and d11 + d22 + d33 = 0. In this case there are six
diagonal matrices in the orbit of D corresponding to the six permutations of the diagonal
entries of D.

To determine the geometric nature of the orbit, we once again calculate the isotropy
group of D. Let H be the isotropy group of D, and let g = (aij) ∈ SO(3). Then g ∈ H if
and only if gD = Dg, that is if and only if d11a11 d22a12 d33a13

d11a21 d22a22 d33a23

d11a31 d22a32 d33a33

 =

 d11a11 d11a12 d11a13

d22a21 d22a22 d22a23

d33a31 d33a32 d33a33


Since d11, d22, d33 are distinct we conclude that g must be a diagonal matrix. The set of
diagonal matrices in SO(3) is a subgroup isomorphic to Z2 × Z2 (the Klein-four group)
given by the matrices 1 0 0

0 −1 0

0 0 −1

 ,

 −1 0 0

0 −1 0

0 0 1

 ,

 −1 0 0

0 1 0

0 0 −1

 ,

 1 0 0

0 1 0

0 0 1


and each of these matrices fixes D under conjugation. Hence H ∼= Z2×Z2, so H is discrete
and has dimension 0. Therefore, in this case, the orbit is diffeomorphic to SO(3)/(Z2×Z2)
and has dimension 3− 0 = 3.

The 2 dimensional orbits are called Veronese surfaces. Next, we show that a Veronese
surface is an embedded copy of RP2 in S4.

1.e) Since the 2 dimensional orbits are diffeomorphic to SO(3)/O(2), to show that the
Veronese surfaces are embedded copies of RP2, we show that SO(3)/O(2) is diffeomorphic
to RP2 . Consider the action of SO(3) on RP2 given by left multiplication: g · [x : y : z] =
[g(x, y, z)]. The action is well defined since

g · [x : y : z] = [g(x, y, z)] = [λg(x, y, z)] = [g(λx, λy, λz)] = g · [λx : λy : λz]

Furthermore, the action factors through the covering map π : S2 → RP2 and the action of
SO(3) on S2 by left multiplication, since for (x, y, z) ∈ S2,

π(g(x, y, z)) = [g(x, y, z)] = g · [x : y : z] = g · π(x, y, z)

Since the action of SO(3) on S2 is transitive the action of SO(3) on RP2 is transitive.
Letting [0 : 0 : 1] ∈ RP2, RP2 is diffeomorphic to SO(3) modulo the isotropy group of
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[0 : 0 : 1]. (0, 0, 1) and (0, 0,−1) map to [0 : 0 : 1] under the covering map S2 → RP2.
Therefore the isotropy group, H of [0 : 0 : 1] is given by

H = {g ∈ SO(3) : g · [0 : 0 : 1] = [0 : 0 : 1]}
= {g ∈ SO(3) : g · π(0, 0, 1) = [0 : 0 : 1]}
= {g ∈ SO(3) : π(g(0, 0, 1)) = [0 : 0 : 1]}
= {g ∈ SO(3) : g(0, 0, 1) = (0, 0, 1) or g(0, 0, 1) = (0, 0,−1)}

=


 ± cos(θ) sin(θ) 0

∓ sin(θ) cos(θ) 0

0 0 ±1

 : θ ∈ [0, 2π]


∼= O(2)

Hence SO(3)/O(2) ∼= RP2.
1.f) We can now use the fact that RP2 is not orientable, while S4 is orientable to prove

that the normal bundle to a Veronese surface in S4 is not orientable. Let RP2 ⊂ S4 be the
Veronese surface in S4, let NRP2 be the normal bundle to RP2 in S4, and let TRP2 be the
tangent bundle to RP2 in S4. By definition of normal bundle, we have TS4 = TRP2⊕NRP2

where TS4 is the tangent bundle of S4 with π : TS4 → S4. Since RP2 is not orientable,
TRP2 is not an orientable bundle, and since S4 is orientable, TS4 is an orientable bundle.

By way of contradiction, suppose NRP2 is orientable. Fix a bundle orientation for
TS4 which induces a bundle orientation on NRP2 ⊂ TS4. A bundle orientation is by
definition, a covering by local trivializations where all the transition functions have positive
determinant. Let {Uα, ϕα} be the bundle orientation of TS4. Since TS4 = TRP2 ⊕NRP2

we may choose {Uα, ϕα} such that {Uα∩RP2, ϕα} is a covering of RP2 by local trivializations
for TRP2 and NRP2 when ϕα is restricted to the correct subset of TS4. Since TRP2 is not
an orientable bundle, there exists p ∈ TRP2 ⊂ TS4 and (Uα, ϕα), (Uβ, ϕβ), p ∈ π−1(Uα∩Uβ)
such that the transition function gαβ|TRP2 restricted to TRP2 has negative determinant at
p. Since TS4 and NRP2 are oriented, gαβ and gαβ|NRP2 have positive determinants at p.
But

gαβ(p) =

 gαβ|TRP2(p) 0

0 gαβ|NRP2(p)


so det(gαβ(p)) = det(gαβ|TRP2(p)) det(gαβ|NRP2(p)) < 0 and we have a contradiction.

2. Now we let Γ be the set of all traceless diagonal matrices on S4. We know Γ
intersects every SO(3) orbit. In particular, we know Γ intersects the Veronese surfaces in
exactly three places and Γ intersects the 3-dimensional orbits in exactly six places.

2.a)&e) Let D ⊂ Mat3(R) be the set of all diagonal matrices, and let W = D ∩ V, so
W is a 2 dimensional subspace of V given by the set
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W =


 d11 0 0

0 d22 0

0 0 −d11 − d22




An orthonormal basis for W is given by

e1 =


1√
6

0 0

0 1√
6

0

0 0 − 2√
6

 e2 =


1√
2

0 0

0 − 1√
2

0

0 0 0


Let Γ = D ∩ S4 = W ∩ S4. Then

Γ = {v = ae1 + be2 : 〈v, v〉 = a2 + b2 = 1} = {cos(θ)e1 + sin(θ)e2 : θ ∈ [0, 2π]}

so Γ is a circle, which may be paramtrized by the unit speed curve

C : S1 −→ Γ

θ 7−→ c(θ)e1 + s(θ)e2

where c(θ) = cos(θ) and s(θ) = sin(θ). For D ∈ Γ, D = C(θ), under the canonical
isomorphism TDW = W, we have TDΓ = span(−s(θ)e1 + c(θ)e2) ⊂W.

2.b) Now we show that Γ is orthogonal to each SO(3) orbit. Let D ∈ Γ, and let orb(D)
denote the orbit of D. To calculate TDorb(D), we consider V, SO(3) ⊂Mat3(R), and the
map:

φ : SO(3) −→ S4 ⊂ V

g 7−→ gDgt

TDorb(D) = φ∗(TidSO(3)), and TidSO(3) = {A ∈ Mat3(R) : A + At = 0} ⊂ Mat3(R).
We may represent A ∈ TidSO(3) by the curve γ : (−ε, ε) → Mat3(R), γ(t) = id + tA, so
φ ◦ γ : (−ε, ε)→Mat3(R) is a curve in Mat3(R) tangent to orb(D). A general element of
TDorb(D) is then of the form

φ∗(A) = [φ ◦ γ]

=
d

dt

∣∣∣∣∣
t=0

(id+ tA)D(id+ tA)t

=
d

dt

∣∣∣∣∣
t=0

(D + t(DAt +AD) + t2ADAt) = DAt +AD
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Observe that A and At have zeros on the diagonal and D is a diagonal matrix. Therefore
DAt and AD will have zeros on the diagonal. It is also clear that DAt +AD is symmetric,
so DAt +AD ∈ V. Hence we have TDorb(D) = {DAt +AD : A+AT = 0} ⊂ V.

We need to show that TDΓ is orthogonal to TDorb(D). To do this, we extend e1, e2 to
an orthonormal basis of V:

e3 =


0 1√

2
0

1√
2

0 0

0 0 0

 , e4 =


0 0 0

0 0 1√
2

0 1√
2

0

 , e5 =


0 0 1√

2

0 0 0

1√
2

0 0


Under the canonical isomorphism TDV = V, TDΓ ⊂ span(e1, e2) and every element of
TDorb(D) has zeros on the diagonal. Therefore TDorb(D) ⊂ span(e3, e4, e4). Hence TDΓ
and TDorb(D) are orthogonal.

2.d) Now we consider the manifold S4/SO(3), and show that S4/SO(3) is homeo-
morphic to a closed interval whose two endpoints correspond to the two Veronese curves.
S4/SO(3) is the topological space whose points are equivalence classes of points in S4

under the equivalence relation M ∼ M ′ if and only if there exists g ∈ SO(3) such that
gMgt = M ′. Let [M ] denote the equivalence class in S4/SO(3) represented by M .

The projection map π : S4 → S4/SO(3), π(M) = [M ] is a continuous open map.
We also have the inclusion map ι : Γ → S4. Since Γ intersects every orbit of SO(3),
π ◦ ι : Γ→ S4/SO(3) is continuous and surjective. Hence S4/SO(3) = π ◦ ι(Γ) = Γ/SO(3).
Recall that for diagonal matrices D,D′ ∈ Γ and g ∈ SO(3), gDgt = D′ if and only
if g ∈ S3 ⊂ SO(3) where S3 acts by permuting the diagonal entries of D. Therefore
S4/SO(3) = Γ/SO(3) = Γ/S3. Hence if we determine Γ/S3 topologically, we determine
S4/SO(3) topologically.

S3 acts linearly on the set of diagonal matrices D ⊂Mat3(R) by permuting the diagonal
entries, and S3 fixes the 2-dimensional subspace W of traceless diagonal matrices. To
determine the action of S3 on Γ, we write down the action of S3 on W with respect to the
basis e1, 22. (123) and (12) (using the notation from before) generate S3. With respect to
the basis e1, e2, (123) acts on W in the following way:

(123) · e1 =


− 2√

6
0 0

0 1√
6

0

0 0 1√
6

 = −1
2e1 −

√
3

2 e2

(123) · e2 =


0 0 0

0 1√
2

0

0 0 − 1√
2

 =
√

3
2 e1 − 1

2e2
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Therefore as a linear map on W, (123) =

 cos(2π
3 ) sin(2π

3 )

− sin(2π
3 ) cos(2π

3 )

 is rotation by 2π
3 . With

respect to e1, e2, (12) acts on W by:

(12) · e1 =


1√
6

0 0

0 1√
6

0

0 0 − 2√
6

 = e1

(123) · e2 =


− 1√

2
0 0

0 1√
2

0

0 0 0

 = −e2

Therefore as a linear map on W, (12) =

 1 0

0 −1

 is reflection about the line generated

by e1. We see that S3 is acting on Γ as the symmetry group of the triangle with vertices
C(0), C(2π

3 ), C(4π
3 ). Therefore Γ/S3 is homeomorphic to a closed interval with endpoints

C(0) and C(π3 ). We have

C(0) =


1√
6

0 0

0 1√
6

0

0 0 − 2√
6



C(π3 ) = c(π3 )e1 + s(π3 )e2 =


2√
6

0 0

0 − 1√
6

0

0 0 − 1√
6


so C(0) is on one Veronese surface, while C(π3 ) is on the other Veronese surface. Therefore
Γ/S3 is homeomorphic to an interval with endpoints the two Veronese surfaces.

2.f)&g) Now we consider the map Ψ : SO(3)× S1 → S4 given by Ψ(g, θ) 7→ g · C(θ),
and compute the pullback of the standard metric ds2 on S4 (induced from the inner product
on V) in terms of the standard basis for left-invariant one-forms on SO(3). Since ds2 is
invariant under the action of SO(3), we have
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(Ψ∗ds2)(g,θ)(A,B) = ds2
(g·C(θ))(Ψ∗A,Ψ∗B)

= ds2
gtg·C(θ)(g

tΨ∗A, g
tΨ∗B)

= ds2
(id,C(θ))(Ψ∗A,Ψ∗B) = (Ψ∗ds2)(id,θ)(A,B)

Therefore to calculate Ψ∗ds2, it suffices to calculate at (id, θ) ∈ SO(3)× S1. Let

E1 =

 0 1 0

−1 0 0

0 0 0

E2 =

 0 0 0

0 0 1

0 −1 0

E3 =

 0 0 1

0 0 0

−1 0 0


be a basis for TidSO(3). Let ∂θ be a basis for TθS

1. Let γi = (id, θ) + t(Ei, 0) be a curve
in Mat3(R)× S1 tangent to (id, θ) ∈ SO(3)× S1. Then we have

Ψ∗(E1) = [Ψ ◦ γ1]

=
d

dt

∣∣∣∣∣
t=0

Ψ(γ(t))

=
d

dt

∣∣∣∣∣
t=0

 1 t 0

−t 1 0

0 0 1

C(θ)

 1 −t 0

t 1 0

0 0 1



=

 0 −
√

2 sin(θ) 0

−
√

2 sin(θ) 0 0

0 0 0


Similar calculations yield

Ψ∗(E2) =


0 0 − 3√

6
cos(θ)− 1√

2
sin(θ)

0 0 0

− 3√
6

cos(θ)− 1√
2

sin(θ) 0 0



Ψ∗(E3) =


0 0 0

0 0 − 3√
6

cos(θ) + 1√
2

sin(θ)

0 − 3√
6

cos(θ) + 1√
2

sin(θ) 0


Ψ∗(∂θ) = C ′(θ)

Then we have
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Ψ∗ds2(E1, E1) = 〈Ψ∗(E1),Ψ∗(E1)〉 = 4 sin2(θ)

Ψ∗ds2(E2, E2) = 〈Ψ∗(E2),Ψ∗(E2)〉 = (
√

3 cos(θ) + sin(θ))2

Ψ∗ds2(E3, E3) = 〈Ψ∗(E3),Ψ∗(E3)〉 = (
√

3 cos(θ)− sin(θ))2

Ψ∗ds2(∂θ, ∂θ) = 〈C ′(θ), C ′(θ)〉 = 1

Ψ∗ds2(Ei, Ej) = 0, i 6= j

Ψ∗ds2(Ei, ∂θ) = 0,∀i

Letting σ1, σ2, σ3 be the dual left invariant coframe to E1, E2, E3, we then have

Ψ∗ds2 = dθ2 + 4 sin2(θ)σ2
1 + (

√
3 cos(θ) + sin(θ))2σ2

2 + (
√

3 cos(θ)− sin(θ))2σ2
3

Let a(θ) = 2 sin(θ), b(θ) =
√

3 cos(θ) + sin(θ) and c(θ) =
√

3 cos(θ) − sin(θ) (we will no
longer right c(θ) for cos(θ)).

2.h) We will now use a(θ), b(θ), and c(θ) to calculate the three-dimensional volume of
the SO(3)-orbit through C(θ) ∈ Γ. Note that since the Veronese surfaces are 2-dimensional,
their 3-dimensional volume is zero. We will calculate the 3-dimensional volume for a generic
3-dimensional orbit represented by C(θ). We wrote Ψ∗ds2 as the sum of squares, so a
volume form on SO(3) is given by

a(θ)σ1 ∧ b(θ)σ2 ∧ c(θ)σ3 = σ̃1 ∧ σ̃2 ∧ σ̃3

σ̃1 = a(θ)σ1, σ̃2 = b(θ)σ2, σ̃3 = c(θ)σ3 are an orthonormal coframe on SO(3) with respect
to Ψ∗ds2. Recall that for a generic 3-dimensional orbit, the isotropy group is Z2×Z2, and
so we have a 4 : 1 covering map SO(3)→ SO(3)/(Z2 × Z2) = orb(C(θ)). Hence

Vol(orb(C(θ))) =
1

4
Vol(SO(3))

and

Vol(SO(3)) =

∫
SO(3)

σ̃1 ∧ σ̃2 ∧ σ̃3

The rest of the argument I am going to make, I’m not sure is correct. Maybe you could
point out where some of the misunderstanding is.

To calculate the volume of SO(3) we use the 2 : 1 covering map SU(2) → SO(3) and
the fact that SU(2) is diffeomorphic to S3. Represent SU(2) be matrices of the form α β

−β α

 , α, β ∈ C, |α|2 + |β|2 = 1

We then have su2, the Lie algebra of SU(2), a three dimensional real vector space with
basis
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A1 =

 i 0

0 −i

 , A2 =

 0 1

−1 0

 , A3 =

 0 i

i 0


A1, A2, A3 then generate a frame for SU(2). Let a1, a2, a3 be the dual coframe. We may
represent π : SU(2)→ SO(3) in the following way, letting su2 = R3

π : SU(2) −→ SO(3)

A 7−→ φA : R3 = su2 −→ R3 = su2

U 7−→ AUA−1

Now with E1, E2, E3 as before (the standard basis for so3 = TidSO(3)), we have (by
a calculation that dπid(M)(U) = [M,U ] = MU − UM for M ∈ su2, U ∈ R3 = su2,
dπid(M) ∈ so3)

dπid(A1) = −2E1

dπid(A2) = 2E2

dπid(A3) = −2E3

Then the 3-form σ1 ∧ σ2 ∧ σ3 will pull back under π to −2a1 ∧ 2a2 ∧−2a3 = 8a1 ∧ a2 ∧ a3

on SU(2). Since π is a 2 : 1 cover, we then have∫
SO(3)

σ1 ∧ σ2 ∧ σ3 =
1

2

∫
SU(2)

8a1 ∧ a2 ∧ a3 = 4

∫
SU(2)

a1 ∧ a2 ∧ a3

Now to calculate
∫
SU(2) a1 ∧ a2 ∧ a3, we identify SU(2) with S3 in the following way

Φ : SU(2) −→ S3 ⊂ R4 α β

−β α

 7−→ (Re(α), Im(α), Re(β), Im(β))

Since Φ is linear, we have dΦid = Φ, so

dΦid = Φ : su2 −→ TΦ(id)S
3 ⊂ R4

A1 7−→ (0, 1, 0, 0)

A2 7−→ (0, 0, 1, 0)

A3 7−→ (0, 0, 0, 1)

Therefore when we pull back the standard inner product on S3 induced by the standard
inner product in R4, we get that A1, A2, A3 generates an orthonormal frame for su2 in the
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pulled-back metric from S3 ⊂ R4. Hence, letting dA be the volume form on S3 ⊂ R4, we
have

2π2 =

∫
S3

dA =

∫
SU(2)

a1 ∧ a2 ∧ a3

Therefore, putting everything we have together we get

Vol(orb(C(θ))) =
1

4

∫
SO(3)

σ̃1 ∧ σ̃2 ∧ σ̃3

=
a(θ)b(θ)c(θ)

4

∫
SO(3)

σ1 ∧ σ2 ∧ σ3

=
a(θ)b(θ)c(θ)

4 · 2

∫
SU(2)

8a1 ∧ a2 ∧ a3

= a(θ)b(θ)c(θ)

∫
SU(2)

a1 ∧ a2 ∧ a3

= a(θ)b(θ)c(θ)2π2

= 4π2 sin(θ)(
√

3 cos(θ) + sin(θ))(
√

3 cos(θ)− sin(θ))
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