Manifolds 2 Final

Robert Hingtgen

Veronese surface

1. Let \mathbb{V} be the vector space of real symmetric 3×3 matrices with trace zero.
a). What is the dimension of \mathbb{V} ?

Proof. Given the following collection of matrices

$$
\begin{gathered}
e_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], e_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad e_{3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
e_{4}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right], e_{5}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],
\end{gathered}
$$

we claim that $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ forms a basis for \mathbb{V}. First, given scalars $v_{1}, v_{2}, v_{3}, v_{4}, v_{5} \in$ \mathbb{R} such that

$$
\sum_{k=1}^{5} v_{k} e_{k}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

it is clear that it must be the case that $v_{1}=v_{2}=v_{3}=v_{4}=v_{5}=0$. Thus the collection $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ is linearly independent. Now any $M \in \mathbb{V}$, for $a, b, c, d, f \in \mathbb{R}$ is of the form

$$
M=\left[\begin{array}{ccc}
a & c & d \\
c & b & f \\
d & f & -a-b
\end{array}\right]=c e_{1}+d e_{2}+f e_{3}+a e_{4}+b e_{5}
$$

This shows that $\mathbb{V} \subseteq \operatorname{Span}\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right)$. Also, for each $1 \leq k \leq 5, e_{k}$ is traceless and symmetric, hence $\operatorname{Span}\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right) \subseteq \mathbb{V}$. Thus $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ is a basis for \mathbb{V}, and so the dimension of \mathbb{V} is 5 .

The group $S O(3)$ acts on \mathbb{V} by conjugation: $g \cdot M=g M g^{T}, g \in S O(3), M \in \mathbb{V}$. Endow \mathbb{V} with the inner product

$$
\langle M, S\rangle=\operatorname{tr}(M S) ; \quad M, S \in \mathbb{V}
$$

b). Show that the $S O(3)$ action on \mathbb{V} is a smooth action by isometries.

Proof. For $g \in S O(3)$ and $M \in \mathbb{V}$, we are given $g \cdot M=g M g^{T}$. Since the matrix entries of $g M g^{T}$ will be polynomials in the matrix entries of g and M, it will be the case that the $S O(3)$ action on \mathbb{V} is smooth.

For each $g \in S O(3)$, define $F_{g}: \mathbb{V} \rightarrow \mathbb{V}$ by $F_{g}(M)=g \cdot M$. Given $M, N \in \mathbb{V}$ and $g \in S O(3)$,

$$
\left\langle F_{g}(M), F_{g}(N)\right\rangle=\operatorname{tr}((g \cdot M)(g \cdot N))=\operatorname{tr}\left(g M g^{T} g N g^{T}\right)
$$

As $g \in S O(3)$, we have that $g^{T} g=\operatorname{Id}_{3 \times 3}$, hence $\operatorname{tr}\left(g M g^{T} g N g^{T}\right)=\operatorname{tr}\left(g M N g^{T}\right)$. A result from linear algebra states that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for two matrices A, B. Hence,

$$
\left\langle F_{g}(M), F_{g}(N)\right\rangle=\operatorname{tr}\left(g M N g^{T}\right)=\operatorname{tr}\left(M N g^{T} g\right)=\operatorname{tr}(M N)=\langle M, N\rangle
$$

Thus for every $g \in S O(3), F_{g}$ is an isometry on \mathbb{V}. Thus the action of $S O(3)$ on \mathbb{V} is a smooth action by isometries.

Restrict the $S O(3)$ action to the 4 -sphere, $S^{4} \subset \mathbb{V}$.
c). Use the eigenvalue decomposition of symmetric matrices to show that the orbits of the restricted action fall into two types: orbits with dimension 3 and orbits with dimension 2. For each of the two types of orbits find the closed subgroup $H \subset S O(3)$ such that the orbit is isomorphic to $S O(3) / H$.

Proof. Given a matrix, $M \in S^{4}$, due to the spectral theorem for real symmetric matrices, there is a $Q \in S O(3)$ such that $D=Q M Q^{T}$ is a diagonal matrix with the eigenvalues of M on the diagonal. Also,

$$
\langle D, D\rangle=\operatorname{tr}\left(D^{2}\right)=\operatorname{tr}\left(Q M^{2} Q^{T}\right)=\operatorname{tr}\left(M^{2}\right)=1
$$

so D is also on S^{4}. This tells us that any $M \in S^{4}$ is in the orbit of some diagonal matrix, also in S^{4}, hence it suffices to verify the claim for the orbits of diagonal matrices in S^{4}.

Define a map $F_{D}: S O(3) \rightarrow S^{4}$ by $F_{D}(g)=g \cdot D=g D g^{T}$. The computation above shows that the trace of a matrix is invariant under conjugation by elements in $S O(3)$, thus the range of F_{D} is contained in S^{4}. (In other words, the action of $S O(3)$ on \mathbb{V} does restrict to $S^{4} \subset \mathbb{V}$.) As stated in the previous part, the action of conjugation by elements of $S O(3)$ will be smooth on S^{4}. This also implies that F_{D} is a smooth map.

As $S O(3)$ is a Lie group, $S O(3)$ acting on itself by left multiplication is smooth. Also, for any $p, q \in S O(3)$, there exists $q p^{-1} \in S O(3)$ such that $q p^{-1}(p)=q$, i.e. left multiplication is a transitive action on $S O(3)$. Given $g, h \in S O(3)$,

$$
F_{D}(g h)=g h D h^{T} g^{T}=g \cdot F_{D}(h)
$$

shows that F_{D} is equivariant with respect to the actions on $S O(3)$ and S^{4}. For a fixed $g \in S O(3)$ we can define a map $\alpha_{g}: S O(3) \rightarrow S O(3)$ via left multiplication, i.e. $\alpha_{g}(h)=g h$. Similarly, for a fixed $g \in S O(3)$, we can define a map $\beta_{g}: S^{4} \rightarrow S^{4}$ via the group action of $S O(3)$ on S^{4}, i.e. $\beta_{g}(M)=g \cdot M$. The maps α_{g}, β_{g} are diffeomorphisms for any value of $g \in S O(3)$ as $\alpha_{g^{T}}, \beta_{g^{T}}$ are the inverse maps, respectively, and all the maps are smooth due to the actions of $S O(3)$ on itself and S^{4} being smooth. Due to the equivariance of F_{D} we have $\beta_{g} \circ F_{D}=F_{D} \circ \alpha_{g}$, and as $d(F \circ G)=d F \circ d G$ in general, we have that the following diagram commutes,

Since left multiplication on $S O(3)$ is a transitive action, we have that F_{D} must be of constant rank.

To find the dimension of the orbit $O_{D}=F_{D}(S O(3))$, by what was shown above, it suffices to check the rank of $d F_{D}$ at any point of $S O(3)$. For the sake of simplicity, we check at the identity of $S O(3)$. We know that $T_{I} S O(3)$ is the space of all skewsymmetric matrices from a previous result. Given $h \in T_{I} S O(3)$, the curve $\gamma(t)=$ $I+t h$ is a line in the space of 3×3 matrices that is 'close' to lying in $S O(3)$ for small t with $\gamma^{\prime}(0)=h$. Hence,

$$
\begin{aligned}
\left(d F_{D}\right)_{I}(h) & =\left.\frac{d}{d t}\left(F_{D} \circ \gamma(t)\right)\right|_{t=0}=\left.\frac{d}{d t}\left(D+t D h^{T}+t h D+t^{2} h D h^{T}\right)\right|_{t=0} \\
& =\left.\left(D h^{T}+h D+2 t h D h^{T}\right)\right|_{t=0}=D h^{T}+h D
\end{aligned}
$$

Denoting $\lambda_{1}, \lambda_{2}, \lambda_{3}$ as the entries on the diagonal of D, we have the following, as $D \in S^{4}$ and $\operatorname{tr}(D)=0$.

$$
\begin{aligned}
& \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \\
& \lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=1
\end{aligned}
$$

By the rank-nullity theorem, to find the rank of $\left(d F_{D}\right)_{I}$, it suffices to find the kernel of $\left(d F_{D}\right)_{I}$, i.e. the $h \in T_{I} S O(3)$ such that $h D=D h$ as h is skew-symmetric. Using the general form of a skew-symmetric matrix

$$
h=\left[\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right]
$$

for some $a, b, c \in \mathbb{R}$, the equation $h D=D h$ leads to the following three equations

$$
\begin{aligned}
a\left(\lambda_{1}-\lambda_{2}\right) & =0 \\
b\left(\lambda_{1}-\lambda_{3}\right) & =0 \\
c\left(\lambda_{2}-\lambda_{3}\right) & =0
\end{aligned}
$$

Upon examination, as $\operatorname{tr}(D)=0$, it can not be the case that $\lambda_{1}=\lambda_{2}=\lambda_{3}$. Thus, we have only two cases, mainly one in which two out of three eigenvalues are equal, and one in which all eigenvalues are distinct.
For the D in which all the eiqnvalues are distinct, via our equations above, $a=b=$ $c=0$, hence $\operatorname{Ker}\left(\left(d F_{D}\right)_{I}\right)=\{\overrightarrow{0}\}$, where $\overrightarrow{0}$ denotes the 3×30-matrix. In this case, $\operatorname{dim}\left(O_{D}\right)=3$.

For the D in which two of the eigenvalues agree, denoting

$$
h_{1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], h_{2}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], h_{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

we find that $\operatorname{Ker}\left(\left(d F_{D}\right)_{I}\right)=\operatorname{Span}\left(h_{i}\right)$ for $1 \leq i \leq 3$ depending on which two eigenvalues agree. However, in all cases the kernel of $\left(d F_{D}\right)_{I}$ is of dimension one, hence $\operatorname{dim}\left(O_{D}\right)=2$.

A well known result from group theory states that a group G modulo the stabilzer of p (the isotropy group of p) is isomorphic to the orbit of p, i.e. $G / G_{p} \cong O_{p}$. Denote H_{D} as the isotropy group of D under the action of $S O(3)$ on S^{4}. Since F_{D} is a smooth map and $H_{D}=F_{D}^{-1}(\{D\}), H_{D}$ will be the closed group such that $S O(3) / H_{D} \cong O_{D}$.
Case 1: The eigenvalues of D are distinct. Take $g \in H_{D}$, thus $g D g^{T}=D$ or $g D=D g$ as $g \in S O$ (3). Taking

$$
g=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
A & B & C
\end{array}\right]
$$

The equation $g D=D g$ implies all the entries of g besides the diagonal are 0 . Also, $\operatorname{det}(g)=1, g g^{T}=\operatorname{Id}_{3 \times 3}$ as $g \in S O(3)$. This implies aec $=1, a^{2}=e^{2}=c^{2}=1$. Hence,

$$
H_{D}=\left\{\operatorname{Id}_{3 \times 3},\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\right\}
$$

which is isomorphic to the Klein 4-group.

Case 2: Two of the eigenvalues of D are equal. Using a similar argument to the above, finding $g \in S O(3)$ so that $g D=D g$ implies that g must be of the form

$$
g=\left[\begin{array}{lll}
a & b & 0 \\
d & e & 0 \\
0 & 0 & C
\end{array}\right]
$$

where $a^{2}+b^{2}=d^{2}+e^{2}=C^{2}=1, a d+b e=0$, and $C(a e-b d)=1$. These equations in turn imply that g is of the form of one of these two matrices

$$
\left[\begin{array}{ccc}
a & b & 0 \\
-b & a & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{ccc}
a & b & 0 \\
b & -a & 0 \\
0 & 0 & -1
\end{array}\right]
$$

where $a^{2}+b^{2}=1$. The matrices of the first type are isomorphic to 2×2 matrices of determinant 1. The matrices of the second type are isomorphic to 2×2 matrices of determinant -1 . Thus, in this case H_{D} is isomorphic to $O(2)$.
d). Show that there are exactly two 2-dimensional orbits. These orbits all called Veronese surfaces.

Proof. The 2-dimensional orbits occur as the orbits of a diagonal matrix D in which two of the eigenvalues are equal. Using the notation of the previous problem, the eigenvalues must also satisfy

$$
\begin{aligned}
& \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \\
& \lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=1
\end{aligned}
$$

Solving these equations in the cases $\lambda_{1}=\lambda_{2}, \lambda_{1}=\lambda_{3}$, and $\lambda_{2}=\lambda_{3}$, leads to the following six matrices.

$$
\left[\begin{array}{ccc}
\pm \frac{1}{\sqrt{6}} & 0 & 0 \\
0 & \pm \frac{1}{\sqrt{6}} & 0 \\
0 & 0 & \mp \frac{2}{\sqrt{6}}
\end{array}\right],\left[\begin{array}{ccc}
\pm \frac{1}{\sqrt{6}} & 0 & 0 \\
0 & \mp \frac{2}{\sqrt{6}} & 0 \\
0 & 0 & \pm \frac{1}{\sqrt{6}}
\end{array}\right],\left[\begin{array}{ccc}
\mp \frac{2}{\sqrt{6}} & 0 & 0 \\
0 & \pm \frac{1}{\sqrt{6}} & 0 \\
0 & 0 & \pm \frac{1}{\sqrt{6}}
\end{array}\right]
$$

The following matrices are in $S O(3)$ and permute the order in which the eigenvalues appear on the diagonal when acting on D by conjugation.

$$
\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Thus, the six matrices above only correspond to two distinct orbits. Thus the two Veronese surfaces correspond to the orbits of the following two diagonal matrices

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & 0 & 0 \\
0 & \frac{1}{\sqrt{6}} & 0 \\
0 & 0 & -\frac{2}{\sqrt{6}}
\end{array}\right], \quad\left[\begin{array}{ccc}
-\frac{1}{\sqrt{6}} & 0 & 0 \\
0 & -\frac{1}{\sqrt{6}} & 0 \\
0 & 0 & \frac{2}{\sqrt{6}}
\end{array}\right] .
$$

e). Show that a Veronese surface is an embedded copy of $\mathbb{R P}^{2}$ in S^{4}.

Proof. Define an action $S O(3) \times S^{2} \rightarrow S^{2}$ for $g \in S O(3)$ and $v \in S^{2}$ by $g \cdot v=g v$. Given any $v, w \in S^{2}$, the action is transitive. This can be seen intuitively, as the cross product $v \times w$ will give the direction of the axis of rotation and then rotate along this axis an angle equivalent to the angle between v and w in the plane they generate.

Define the antipodal map $F: S^{2} \rightarrow S^{2}, F(v)=-v$. Clearly, for any $g \in S O(3)$,

$$
g \cdot F(v)=g \cdot(-v)=-g v=F(g \cdot v),
$$

hence the antipodal map and the action commute.
The space $\mathbb{R P}^{2}$ can also be defined as S^{2} / \sim where \sim is the equivalence relation $v \sim-v$. Given $w \in S^{2}$,

$$
g \cdot(-w)=-(g \cdot w)
$$

shows that in $\mathbb{R P}^{2}, g \cdot(-w)=g \cdot w$. Thus, the action of $S O(3)$ can be defined on $\mathbb{R} \mathbb{P}^{2}$ as left multiplication since the computation above showed that the action is well-defined. (Independent of representative chosen) The action is transitive on $\mathbb{R P}^{2}$ as it was transitive on S^{2}. Hence $\mathbb{R} \mathbb{P}^{2} \cong S O(3) / H_{v}$ for any $v \in \mathbb{R} \mathbb{P}^{2}$ where H_{v} is the isotropy group of v.
Taking $v=(0,0,1)$, we must find $g \in S O(3)$ so that

$$
\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
A & B & C
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\pm 1
\end{array}\right]
$$

This equation implies that $c=f=0, C= \pm 1$. As $g \in S O(3)$, we have that $g^{T} g=\mathrm{Id}_{3 \times 3}$, thus

$$
\left[\begin{array}{ccc}
a^{2}+b^{2} & a d+b e & a A+b B \\
a d+b e & d^{2}+e^{2} & d A+e B \\
a A+b B & d A+e B & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Since $a A+b B=d A+e B=0$. If $a \neq 0$, then $(a e-b d) B=0$, and as $\operatorname{det}(g)=1$ it must be the case that $A=B=0$. If $a=0$, then $A=B=0$ as the condition that $\operatorname{det}(g)=1$ implies that $b, d \neq 0$.

Thus the entries of g must satisfy the equations; $a^{2}+b^{2}=d^{2}+e^{2}=C(a e-b d)=1$, $a d+b e=0$, and $C= \pm 1$. We found earlier, in part c, that H_{v} will be isomorphic to $O(2)$. Hence for the diagonal matrix, D, in Case 2 of part c

$$
\mathbb{R} \mathbb{P}^{2} \cong S O(3) / H_{v}=S O(3) / H_{D} \cong O_{D}
$$

Showing that the Veronese surface O_{D} is an embedded copy of $\mathbb{R P}^{2}$ in S^{4}.
f). Is the normal bundle to a Veronese surface within S^{4} an oriented vector bundle? Why or why not?

Proof. Take $D \in S^{4}$ so that O_{D} is a Veronese surface. Then both O_{D} and S^{4} have the standard metric induced by the inner product on \mathbb{V}. Thus, at any point $p \in O_{D}$, we may view the normal space, $N_{p} O_{D}$ as the orthogonal complement to the tangent space. Thus,

$$
T_{p} O_{D} \oplus N_{p} O_{p}=T_{p} S^{4} .
$$

If the normal bundle was orientable, then as S^{4} is orientable, there would be an induced orientation on O_{D}. This is a contradiction as it was just shown that O_{D} is an embedded copy of the non-orientable surface $\mathbb{R P}^{2}$.

2. Veronese continued

a). Show that the diagonal matrices intersect S^{4} in a circle Γ which intersects every $S O(3)$ orbit.

Proof. Call \mathcal{D} the vector space of 3×3 diagonal matrices. Then it is clear that \mathcal{D} is isomorphic to \mathbb{R}^{3}. Intersecting \mathcal{D} with \mathbb{V} gives a two-dimensional subspace of \mathcal{D} as we are losing one degree of freedom due to the restrction on the trace. Using the inner product on \mathbb{V}, one can find an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ for $\mathcal{D} \cap \mathbb{V}$.

$$
e_{1}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & 0 & 0 \\
0 & -\frac{2}{\sqrt{6}} & 0 \\
0 & 0 & \frac{1}{\sqrt{6}}
\end{array}\right], \quad e_{2}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Hence, the set of diagonal matrices in \mathbb{V} lying on S^{4} will be $\Gamma:=\left\{x e_{1}+y e_{2} \mid \| x e_{1}+\right.$ $\left.y e_{2} \|=1\right\}$. And

$$
\begin{aligned}
1 & =\left\|x e_{1}+y e_{2}\right\|^{2}=\left\langle x e_{1}+y e_{2}, x e_{1}+y e_{2}\right\rangle=\operatorname{tr}\left(\left[\begin{array}{ccc}
\frac{y}{\sqrt{2}}+\frac{x}{\sqrt{6}} & 0 & 0 \\
0 & -\frac{2 x}{\sqrt{6}} & 0 \\
0 & 0 & \frac{x}{\sqrt{6}}-\frac{y}{\sqrt{2}}
\end{array}\right]^{2}\right) \\
& =\left(\frac{y}{\sqrt{2}}+\frac{x}{\sqrt{6}}\right)^{2}+\left(-\frac{2 x}{\sqrt{6}}\right)^{2}+\left(\frac{x}{\sqrt{6}}-\frac{y}{\sqrt{2}}\right)^{2}=x^{2}+y^{2} .
\end{aligned}
$$

Thus $\Gamma:=\left\{x e_{1}+y e_{2} \mid x^{2}+y^{2}=1\right\}$. For any $M \in S^{4}$, by the spectral theorem for real symmetric matrices, there exists $g \in S O(3)$ such that $g M g^{T}$ is a diagonal matrix, with $\operatorname{tr}\left(g M g^{T}\right)=\operatorname{tr}(M)=0, \operatorname{tr}\left(g M^{2} g^{T}\right)=\operatorname{tr}\left(M^{2}\right)=1$. Thus $g M g^{T} \in \Gamma$. Thus, as $M \in S^{4}$ was taken arbitrarily, we have shown that the diagonal matrices intersect S^{4} in a circle, Γ, which intersects every $S O(3)$ orbit.
b). Show that Γ is orthogonal to each $S O(3)$ orbit.

Proof. Each $S O(3)$ orbit will intersect Γ at a diagonal matrix. Use this diagonal matrix, call it D as the representative of the $S O(3)$ orbit. As the space of diagonal matrices, \mathcal{D} is a vector space, we have that $T_{X} \mathcal{D} \cong \mathcal{D}$ for any $X \in \mathcal{D}$. Hence, $T_{D} \Gamma \subset T_{D} \mathcal{D}$ can be thought of as some collection of diagonal matrices.

Now, using the orbit map from problem $1 \mathrm{c}, F_{D}: S O(3) \rightarrow S^{4}$, we have that $\left(d F_{D}\right)_{I}$ will be onto $T_{D} O_{D}$. Hence for any $x \in T_{D} O_{D}$ there exists $h \in T_{I} S O(3)$ such that $x=\left(d F_{D}\right)_{I}(h)$. Thus $x=D h^{T}+h D$ for some skew-symmetric matrix h.

Now, any skew-symmetric matrix has only zero as its diagonal entries, because of which, the product of a skew-symmetric matrix and a diagonal matrix will have 0 as the only entry on the diagonal. Hence $D h^{T}$ and $h D$ have only zero along the diagonal, and thus so will x. This is true of any $x \in T_{D} O_{D}$. Thus given any $x \in T_{D} O_{D}$ and any $g \in T_{D} \Gamma$ we have

$$
\langle g, x\rangle=\operatorname{tr}(g x)=0,
$$

as the product of a diagonal matrix and a matrix with only zero along the diagonal has only zero along the diagonal. Thus $T_{D} \Gamma \perp T_{D} O_{D}$.
c). Show that Γ intersects a Veronese surface in exactly three points while it intersects a 3-dimensional orbit in exactly six points.

Proof. Let $M \in S^{4}$. As we traverse the orbit of M, it is analoguous to viewing M under different bases. As the eigenvalues of a matrix are independent of the basis
chosen, the orbit of M will intersect Γ only at diagonal matrices with the eigenvalues as the non-zero entries. As shown in problem 1d, $S O(3)$ acting on S^{4} by conjugation contains elements that will permute the elements on the diagonal of a diagonal matrix. Therefore all permutations of a diagonal matrix also intersect Γ if the given diagonal matrix does. Thus the orbit of M will intersect Γ precisely the same number of times as there are orderings of the eigenvalues on the diagonal.

Thus for M in an orbit which is not a Veronese surface, as found earlier, the eigenvalues of M are all distinct. The number of ways to order 3 distinct objects is 6 . Thus, the orbit of M will intersect Γ six times.

If M is in an orbit which is a Veronese surface, then two of the eigenvalues of M are equal. The number of orderings of three objects in which two are equal is 3 . Thus, the orbit of M will intersect Γ three times.
d). Show that $S^{4} / S O(3)$ is topologically a closed interval whose two endpoints correspond to the two Veronese surfaces.

Proof. Making use of parameterization of Γ (below in 2 e) we can find the values of θ so that $C(\theta)$ equals one of the six matrices listed in problem 1 d . In doing so, we find that the values $\theta=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}$ correspond to elements in an orbit that is a Veronese surface.

For $0<\theta<\frac{\pi}{3}, C(\theta)$ corresponds to the intersection of an orbit that is not a Veronese surface with the circle Γ. For this θ, denote $C(\theta)=g$, and g is of the form

$$
\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right], \quad \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \neq \lambda_{1}
$$

And in the previous proof, part 2c, we found that any other matrix in $\Gamma \cap O_{g}$ will be a diagonal matrix in which the eigenvalues (diagonal elements) will be permuted.

If $d \in \Gamma \cap O_{g}$ and d is a matrix formed by an even permutation of the diagonal elements of g, then d is

$$
\left[\begin{array}{ccc}
\lambda_{2} & 0 & 0 \\
0 & \lambda_{3} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right] \quad \text { OR }\left[\begin{array}{ccc}
\lambda_{3} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right]
$$

For d of the first type

$$
\begin{aligned}
\langle d, g\rangle & =\operatorname{tr}(d g)=\operatorname{tr}\left(\left[\begin{array}{ccc}
\lambda_{1} \lambda_{2} & 0 & 0 \\
0 & \lambda_{2} \lambda_{3} & 0 \\
0 & 0 & \lambda_{1} \lambda_{3}
\end{array}\right]\right) \\
& =\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{3}=-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{1} \lambda_{2}\right)=-\frac{1}{2} .
\end{aligned}
$$

The last equality is due to the fact that $\operatorname{tr}(g)=0$ and $\operatorname{tr}\left(g^{2}\right)=1$ implies that $\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{1} \lambda_{2}=\frac{1}{2}$. Thus, as $g, d \in \Gamma,\|g\|=\|d\|=1$, the angle between d, g is $\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$. A similar computation may be performed for matrices of the other type. Thus we have shown that for any $d \in \Gamma \cap O_{g}$ such that d is a matrix formed by an even permutation of the diagonal elements of g, then the angle between d and g is $\frac{2 \pi}{3}$.

The computations above could be done for any $g=C(\theta)$. Hence a similar argument to the one directly above shows that any two elements in $\Gamma \cap O_{g}$ related by an even permutation have an angle of $\frac{2 \pi}{3}$ between them.
Now, briefly returning to our case of $g=C(\theta)$ for $0<\theta<\frac{\pi}{3}$, define $h=C(-\theta)$. Now,
$g=\cos (\theta) e_{1}+\sin (\theta) e_{2}=\left[\begin{array}{ccc}\frac{\cos (\theta)}{\sqrt{6}}+\frac{\sin (\theta)}{\sqrt{2}} & 0 & 0 \\ 0 & -\frac{2 \cos (\theta)}{\sqrt{6}} & 0 \\ 0 & 0 & \frac{\cos (\theta)}{\sqrt{6}}-\frac{\sin (\theta)}{\sqrt{2}}\end{array}\right]=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]$.
Hence,
$h=\cos (-\theta) e_{1}+\sin (-\theta) e_{2}=\left[\begin{array}{ccc}\frac{\cos (\theta)}{\sqrt{6}}-\frac{\sin (\theta)}{\sqrt{2}} & 0 & 0 \\ 0 & -\frac{2 \cos (\theta)}{\sqrt{6}} & 0 \\ 0 & 0 & \frac{\cos (\theta)}{\sqrt{6}}+\frac{\sin (\theta)}{\sqrt{2}}\end{array}\right]=\left[\begin{array}{ccc}\lambda_{3} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{1}\end{array}\right]$.
Thus h is the matrix formed by an odd permutation of elements on the diagonal of g. Thus, by what was stated above, any matrix in $\Gamma \cap O_{g}$ that is an odd permutation of the elements of g will either be h or have the angle $\frac{2 \pi}{3}$ between itself and h.

Thus the orbit of $g=C(\theta), 0<\theta<\frac{\pi}{3}, O_{g}$, intersects Γ in exactly one point in each $\left\{C(t) \left\lvert\, \frac{k \pi}{3}<t<\frac{(k+1) \pi}{3}\right.\right\}$ for $0 \leq k \leq 5$. So, make the identification of each point in $\Gamma \cap O_{g}$ with $g=C(\theta)$ for $0 \leq \theta \leq \frac{\pi}{3}$. In other words, for any $0 \leq \theta \leq \frac{\pi}{3}$, identify or 'glue' together the points $C(\theta), C\left(\frac{2 \pi}{3}-\theta\right), C\left(\frac{2 \pi}{3}+\theta\right), C\left(\frac{4 \pi}{3}-\theta\right), C\left(\frac{4 \pi}{3}+\theta\right), C(2 \pi-\theta)$. Intuitively, imagine a pizza with six slices of equal area, and taking one slice and folding it onto the counterclockwise adjacent slice, and repeating this 4 more times.

We then end up with a 'pizza sandwich' with our identification being on the crust or 'edge'.

With this in mind, the pre-image of any open subset of $\left\{C(\theta) \left\lvert\, 0 \leq \theta \leq \frac{\pi}{3}\right.\right\}$ will be open under our identification. (The preimage of the open half-interval at either of the endpoints 'unfolds' to become open intervals about $\Gamma \cap O_{D}$ where O_{D} is a Veronese surface.) Thus, our identification is continuous.

Thus $S^{4} / S O(3)$ can be viewed as $\left\{C(\theta) \left\lvert\, 0 \leq \theta \leq \frac{\pi}{3}\right.\right\}$, as for each $0 \leq \theta \leq \frac{\pi}{3}$ corresponds to a unique orbit $C(\theta)$ under our identification due to the statements above. And as Γ intersects every $S O(3)$ orbit, we have that the set $\left\{C(\theta) \left\lvert\, 0 \leq \theta \leq \frac{\pi}{3}\right.\right\}$ sees every orbit of $S O(3)$ acting on S^{4}.

The explicit identification written three paragraphs earlier shows that for $\theta=0, \frac{\pi}{3}$, $C(\theta)$ corresponds to each Veronese surface respectively. Thus $S^{4} / S O(3)$ is topologically a closed interval whose endpoints correspond to the two Veronese surfaces.
e). Parameterize Γ by S^{1} : find a unit speed curve C : $S^{1} \rightarrow \Gamma, \theta \mapsto C(\theta), 0 \leq \theta \leq 2 \pi$, $C(0)=C(2 \pi)$ which sweeps out Γ.

Proof. Using the orthonormal basis constructed in problem 2a, we can write $C(\theta)=$ $\cos (\theta) e_{1}+\sin (\theta) e_{2}$. And $C(0)=e_{1}=C(2 \pi)$, and

$$
\begin{aligned}
\left\|C^{\prime}(\theta)\right\|^{2} & =\left\langle C^{\prime}(\theta), C^{\prime}(\theta)\right\rangle \\
& =(-\sin (\theta))^{2}\left\|e_{1}\right\|^{2}-2 \sin (\theta) \cos (\theta)\left\langle e_{1}, e_{2}\right\rangle+(\cos (\theta))^{2}\left\|e_{2}\right\|^{2}=1
\end{aligned}
$$

Thus $C(\theta)$ has unit speed.
f). Consider the map $\Psi: S O(3) \times S^{1} \rightarrow S^{4}$ given by $\Psi(g, \theta) \mapsto g \cdot C(\theta)$. Show that the pullback of the standard metric $d s^{2}$ on S^{4} (the one induced from the inner product on \mathbb{V}) can be expressed as

$$
\Psi^{*} d s^{2}=d \theta^{2}+a(\theta)^{2} \sigma_{1}^{2}+b(\theta)^{2} \sigma_{2}^{2}+c(\theta)^{2} \sigma_{3}^{2}
$$

where the σ_{i} form the standard basis for the space of left-invariant one-forms on $S O(3)$.

Proof. For a fixed $x_{0} \in \Gamma$, there exists $\theta_{0} \in[0,2 \pi]$ such that $x_{0}=C\left(\theta_{0}\right)$. Define $\Psi^{x_{0}}: S O(3) \rightarrow S^{4}$ by $\Psi^{x_{0}}(g)=g \cdot x_{0}$. For a fixed $h \in S O(3)$ define $F^{h}: S^{1} \rightarrow S^{4}$ by $F^{h}(\theta)=h \cdot C(\theta)$. A previous result gives

$$
T_{(g, \theta)}\left(S O(3) \times S^{1}\right) \cong T_{g} S O(3) \oplus T_{\theta} S^{1}
$$

Thus we can view the differential $d \Psi_{(g, \theta)}$ as $\left(d \Psi^{x_{0}}\right)_{g} \times\left(d F^{g}\right)_{\theta}$. Thus for $\left(g, \theta_{1}\right),\left(h, \theta_{2}\right) \in$ $T_{(g, \theta)}\left(S O(3) \times S^{1}\right)$,

$$
\begin{aligned}
\Psi^{*} d s^{2}\left(\left(g, \theta_{1}\right),\left(h, \theta_{2}\right)\right) & =d s^{2}\left(d \Psi\left(g, \theta_{1}\right), d \Psi\left(h, \theta_{2}\right)\right)=d s^{2}\left(\left(d \Psi^{x_{0}}(g), d F^{g}\left(\theta_{1}\right)\right),\left(d \Psi^{x_{0}}(h), d F^{g}\left(\theta_{2}\right)\right)\right) \\
& =d s^{2}\left(\left(d \Psi^{x_{0}}(g), 0\right),\left(d \Psi^{x_{0}}(h), 0\right)+d s^{2}\left(0, d F^{g}\left(\theta_{1}\right)\right),\left(0, d F^{g}\left(\theta_{2}\right)\right)\right)
\end{aligned}
$$

For a fixed $\theta, d F^{g}(\theta)=0$. Hence

$$
\Psi^{*} d s^{2}((g, \theta),(h, \theta))=d s^{2}\left(\left(d \Psi^{x_{0}}(g), 0\right),\left(d \Psi^{x_{0}}(h), 0\right) .\right.
$$

As $T_{g} S O(3)$ is equivalent to the space of skew symmetric matrices for any $g \in S O(3)$, and that

$$
E_{1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], E_{2}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], E_{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

is an orthogonal basis for the space of skew symmetric matrices, we have that

$$
d s^{2}\left(\left(d \Psi^{x_{0}}(g), 0\right),\left(d \Psi^{x_{0}}(h), 0\right)=a(\theta)^{2} \sigma_{1}^{2}+b(\theta)^{2} \sigma_{2}^{2}+c(\theta) \sigma_{3}^{2},\right.
$$

for $\sigma_{1}, \sigma_{2}, \sigma_{3}$ the dual basis associated to E_{1}, E_{2}, E_{3}.
g). Compute the functions $a(\theta), b(\theta), c(\theta)$.
h). Compute the three-dimensional volume of the $S O(3)$-orbit through $C(\theta) \in \Gamma$. The result will be a function of θ.

